WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Oral presentations 9 Spectral features of vine leaves are influenced by their mineral content

Spectral features of vine leaves are influenced by their mineral content

Abstract

The reflectance spectra of vegetation carry potentially useful information that can be used to determine chemical composition and discriminate between vegetation classes. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data.  Presently, results from reflectance measurements performed by spectroradiometry on leaves and branches of Vitis vinifera L. cv. Merlot and Cabernet Sauvignon from two vineyards in south Brazil are reported. The vineyards had different geological histories but were subjected to the same management. The objectives were to detect spectral differences between the vineyards, and to correlate these differences to variations in foliar traits like the chemical composition of vine leaves. To that end, seven vine parcels were selected for reflectance measurements and chemical analyses (of eleven elements) of vine leaves, and correlations between reflectance and chemical composition were looked for. An initial investigation by discriminant analysis applied to reflectance data of leaves and branches and to grape varieties as well allowed for good separation between vineyards and varieties (> 90% accuracy). By further investigating the correlations between leaf chemical composition and reflectance along the wavelength domain covered by the measurements, we found several well-determined wavelengths with Pearson correlation coefficients r > 0.7. Abundances of elements could be modelled up to 94% accuracy. These preliminary results, which have to be validated, suggest that variations in soil properties induce chemical differences in vine leaves that can be detected by reflectance measurements. Applications of this observation include the assessment of the chemical content of vine leaves by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Jorge Ducati, Adriane Thum

Presenting author

Jorge Ducati – Remote Sensing Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil 

Contact the author

Keywords

vineyard geology – chemical abundances – spectroradiometry – multivariate analysis

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

An efficient protocol for long-term maintenance of embryogenic calluses of Vitis vinifera

New breeding techniques (NBTS) could play a significant role in the genetic improvement of grapevine by producing new grape varieties with improved quantitative and qualitative characteristics. However, the application of these new techniques faces some technical challenges. One of the challenges is the generation of embryogenic calluses, which are not only difficult to obtain but it is also difficult to maintain their competence during in vitro cultivation, and thus regenerate plants without defects.

Adaptation to soil and climate through the choice of plant material

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.

Maturità fenolica e cellulare come metodo di valutazione dell’interazione vitigno-ambiente: il caso del Cabernet-Sauvignon

ln the current work, phenolic and cellular maturation curves were used to assess the degree of adaptation of the cultivar Cabernet sauvignon to the sites under esamination. Five wine­-producing zones with different pedoclimatic characteristics and latitudes were considered (Marche, Toscana, Emilia, Friuli and Slovenia).