WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Posters 9 Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Abstract

Acetaldehyde is a common component of wine. It is already formed during the fermentation being an intermediate in the production of ethanol. Moreover, it can derive from the oxidation of ethanol during the wine production and aging. In wine, concentrations of acetaldehyde range from 30 to 130 mg/L. Acetaldehyde in wine can react with many compounds such as SO2, amino acids and polyphenols. The reaction between acetaldehyde and wine polyphenols takes place through a nucleophilic attack of polyphenols on the protonated form of the aldehyde,  affording methyl methine-linked dimers of two different units of polyphenolic structures, among others. The numerous and complex reactions trigged by acetaldehyde markedly influence the evolution of red wines during aging. Although numerous studies aimed to determine the chemical nature of reaction products in model solution and real wines, data concerning a possible change in reactivity of red wines towards salivary proteins due to acetaldehyde reactions are not known. This piece of information can be of great relevance as the interaction of wine with saliva and the precipitation of salivary proteins is a major phenomenon responsible for wine astringency. 

In the present work, to investigate the changes in the precipitation of salivary proteins after interaction with red wine, the effects of increasing concentrations of acetaldehyde (0-190 mg/L) in two wines with different polyphenolic composition (Aglianico and Tintilia) were studied over a 90-day period.

The impact of acetaldehyde reactions on the reactivity towards salivary proteins was determined by SDS-PAGE analysis of proteins before and after the reaction and Saliva Precipitation Index (SPI) was measured. 

For both wines a significant precipitation of colored matter was observed as a function of acetaldehyde concentration.  In all wines, a decrease of SPI due to acetaldehyde addition was detected. However, a different trend was observed in the two wines. In particular, Aglianico showed a greater decrease. The SPI of either Aglianico or Tintilia significantly changed over time along with polymeric pigments content as suggested by HPLC and MS analyses.

Overall, the results showed that the reactions in which acetaldehyde is involved exert important effects in the interactions between polyphenolic compounds and salivary proteins.

Therefore, the management of the acetaldehyde is to be properly addressed throughout all the stages of the winemaking process.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Francesca Coppola, Martino Forino, Alessandra Rinaldi, Luigi Picariello, Massimo Iorizzo, Luigi Moio, Angelita Gambuti

Presenting author

Francesca Coppola – Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy

Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy | Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Campobasso, Italy, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy

Contact the author

Keywords

Acetaldehyde, Precipitation of Salivary Proteins, Red wine, Phenolic compounds

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Promoting sustainability in Mediterranean agriculture: insights from the Portuguese vine & wine sector

Agroecology is an integrated approach that simultaneously applies ecological and social concepts and principles to redesign and manage food and agricultural systems, promoting agroecosystems with the necessary biological, socio-economic, and institutional diversity and alignment to support greater efficiency. Thus, several studies have been carried out at promoting the adoption of more agroecological practices among farmers and a wider audience concerning soil conservation and health maintenance.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

Uncovering the influence of vineyard management on fungal community structure and functional diversity within above-ground compartments

In viticulture, microbial communities – particularly fungi – play a vital role in plant health, disease management, and grape quality.

Cell-to-cell contact modulates Starmerella bacillaris early death in mixed fermentations with Saccharomyces cerevisiae in a couple-dependent way

AIM: The diversity and complexity of the fermentation ecosystem during wine making limits the successful prediction of wine characteristics. The use of selected starter cultures has allowed a better control of the fermentation process and the production of wines with established characteristics. Among them, the use of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae yeasts has gained attention in recent years due to the fructophylic nature of the first and the ability of this inoculation protocol to reduce the acetic acid and ethanol content of the wines.