WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Posters 9 Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Abstract

Acetaldehyde is a common component of wine. It is already formed during the fermentation being an intermediate in the production of ethanol. Moreover, it can derive from the oxidation of ethanol during the wine production and aging. In wine, concentrations of acetaldehyde range from 30 to 130 mg/L. Acetaldehyde in wine can react with many compounds such as SO2, amino acids and polyphenols. The reaction between acetaldehyde and wine polyphenols takes place through a nucleophilic attack of polyphenols on the protonated form of the aldehyde,  affording methyl methine-linked dimers of two different units of polyphenolic structures, among others. The numerous and complex reactions trigged by acetaldehyde markedly influence the evolution of red wines during aging. Although numerous studies aimed to determine the chemical nature of reaction products in model solution and real wines, data concerning a possible change in reactivity of red wines towards salivary proteins due to acetaldehyde reactions are not known. This piece of information can be of great relevance as the interaction of wine with saliva and the precipitation of salivary proteins is a major phenomenon responsible for wine astringency. 

In the present work, to investigate the changes in the precipitation of salivary proteins after interaction with red wine, the effects of increasing concentrations of acetaldehyde (0-190 mg/L) in two wines with different polyphenolic composition (Aglianico and Tintilia) were studied over a 90-day period.

The impact of acetaldehyde reactions on the reactivity towards salivary proteins was determined by SDS-PAGE analysis of proteins before and after the reaction and Saliva Precipitation Index (SPI) was measured. 

For both wines a significant precipitation of colored matter was observed as a function of acetaldehyde concentration.  In all wines, a decrease of SPI due to acetaldehyde addition was detected. However, a different trend was observed in the two wines. In particular, Aglianico showed a greater decrease. The SPI of either Aglianico or Tintilia significantly changed over time along with polymeric pigments content as suggested by HPLC and MS analyses.

Overall, the results showed that the reactions in which acetaldehyde is involved exert important effects in the interactions between polyphenolic compounds and salivary proteins.

Therefore, the management of the acetaldehyde is to be properly addressed throughout all the stages of the winemaking process.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Francesca Coppola, Martino Forino, Alessandra Rinaldi, Luigi Picariello, Massimo Iorizzo, Luigi Moio, Angelita Gambuti

Presenting author

Francesca Coppola – Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy

Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy | Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Campobasso, Italy, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy

Contact the author

Keywords

Acetaldehyde, Precipitation of Salivary Proteins, Red wine, Phenolic compounds

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Evaluation of vineyards, fruit and wine affected by wild fire smoke

Wineries may randomly reject fruit from vineyards near wild fires exposed to smoke. It is difficult to determine if fruit has been compromised in quality when exposed to smoke

Influence of protective colloids on tartrate stability, polysaccharide contents and volatile compound profile of a white wine

The tartaric salts precipitation is one of the main issues regarding wine instability 1. In addition to the well-known and deeply studied phenomena of potassium hydrogentartrate precipitation (KHT), the last decade has been increased the phenomena of calcium tartrate (CaT) precipitation, that is a concern for the wine industry 2.

The use of zirconia dioxide enclosed in a metallic cage for the stabilisation of Chardonnay white wine

White wines are commonly stabilised by removing the heat unstable proteins through adsorption by bentonite, an effective but inefficient wine processing step. Alternative absorbents are thus sought and zirconium dioxide (zirconia) is recognised as a promising candidate.

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.

Grapes aminoacidic profile: impact of abiotic factors in a climate change scenario

Amino acids play a crucial role in determining grape and wine quality [1]. Recently, research has suggested their metabolism is key to plant abiotic stress tolerance [2]. Therefore, the study of amino acid accumulation in grape berries and its response to environmental factors is of both scientific and economic importance.