WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Posters 9 Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Abstract

Acetaldehyde is a common component of wine. It is already formed during the fermentation being an intermediate in the production of ethanol. Moreover, it can derive from the oxidation of ethanol during the wine production and aging. In wine, concentrations of acetaldehyde range from 30 to 130 mg/L. Acetaldehyde in wine can react with many compounds such as SO2, amino acids and polyphenols. The reaction between acetaldehyde and wine polyphenols takes place through a nucleophilic attack of polyphenols on the protonated form of the aldehyde,  affording methyl methine-linked dimers of two different units of polyphenolic structures, among others. The numerous and complex reactions trigged by acetaldehyde markedly influence the evolution of red wines during aging. Although numerous studies aimed to determine the chemical nature of reaction products in model solution and real wines, data concerning a possible change in reactivity of red wines towards salivary proteins due to acetaldehyde reactions are not known. This piece of information can be of great relevance as the interaction of wine with saliva and the precipitation of salivary proteins is a major phenomenon responsible for wine astringency. 

In the present work, to investigate the changes in the precipitation of salivary proteins after interaction with red wine, the effects of increasing concentrations of acetaldehyde (0-190 mg/L) in two wines with different polyphenolic composition (Aglianico and Tintilia) were studied over a 90-day period.

The impact of acetaldehyde reactions on the reactivity towards salivary proteins was determined by SDS-PAGE analysis of proteins before and after the reaction and Saliva Precipitation Index (SPI) was measured. 

For both wines a significant precipitation of colored matter was observed as a function of acetaldehyde concentration.  In all wines, a decrease of SPI due to acetaldehyde addition was detected. However, a different trend was observed in the two wines. In particular, Aglianico showed a greater decrease. The SPI of either Aglianico or Tintilia significantly changed over time along with polymeric pigments content as suggested by HPLC and MS analyses.

Overall, the results showed that the reactions in which acetaldehyde is involved exert important effects in the interactions between polyphenolic compounds and salivary proteins.

Therefore, the management of the acetaldehyde is to be properly addressed throughout all the stages of the winemaking process.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Francesca Coppola, Martino Forino, Alessandra Rinaldi, Luigi Picariello, Massimo Iorizzo, Luigi Moio, Angelita Gambuti

Presenting author

Francesca Coppola – Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy

Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy | Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Campobasso, Italy, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy

Contact the author

Keywords

Acetaldehyde, Precipitation of Salivary Proteins, Red wine, Phenolic compounds

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Nel 2007 è stata avviata una ricerca nell’areale di produzione del Franciacorta DOCG che ha riguardato un ampio numero di vigneti di Chardonnay con riferimento ai quali sono stati acquisite

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effets de l’application d’acide gibbérellique (GA3) sur la qualité de raisins et de vins produits en climat tropical au Nord-Est du Brésil

The honeydew moth Cryptoblabes gnidiella is the main problem for the wineries in the Northeast of the Brazil, because it attacks the bunch and reduces the quality of the grapes and the wines. In order to stretch out the bunch to facilitate the penetration of the insecticides, it was used gibberellic acid. Six treatments with different concentrations and different dates of application, and the control were compared.

Primary results on the characterisation of “terroir” in the certified denomination of origin Rioja (Spain)

La integración de variables referentes al clima, la litología y la morfología del relieve y el suelo en la D.O. Ca Rioja permite la configuración de un modelo a través de cuya validación se obtiene la delimitación de zonas vitícolas.