WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Posters 9 Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Abstract

Acetaldehyde is a common component of wine. It is already formed during the fermentation being an intermediate in the production of ethanol. Moreover, it can derive from the oxidation of ethanol during the wine production and aging. In wine, concentrations of acetaldehyde range from 30 to 130 mg/L. Acetaldehyde in wine can react with many compounds such as SO2, amino acids and polyphenols. The reaction between acetaldehyde and wine polyphenols takes place through a nucleophilic attack of polyphenols on the protonated form of the aldehyde,  affording methyl methine-linked dimers of two different units of polyphenolic structures, among others. The numerous and complex reactions trigged by acetaldehyde markedly influence the evolution of red wines during aging. Although numerous studies aimed to determine the chemical nature of reaction products in model solution and real wines, data concerning a possible change in reactivity of red wines towards salivary proteins due to acetaldehyde reactions are not known. This piece of information can be of great relevance as the interaction of wine with saliva and the precipitation of salivary proteins is a major phenomenon responsible for wine astringency. 

In the present work, to investigate the changes in the precipitation of salivary proteins after interaction with red wine, the effects of increasing concentrations of acetaldehyde (0-190 mg/L) in two wines with different polyphenolic composition (Aglianico and Tintilia) were studied over a 90-day period.

The impact of acetaldehyde reactions on the reactivity towards salivary proteins was determined by SDS-PAGE analysis of proteins before and after the reaction and Saliva Precipitation Index (SPI) was measured. 

For both wines a significant precipitation of colored matter was observed as a function of acetaldehyde concentration.  In all wines, a decrease of SPI due to acetaldehyde addition was detected. However, a different trend was observed in the two wines. In particular, Aglianico showed a greater decrease. The SPI of either Aglianico or Tintilia significantly changed over time along with polymeric pigments content as suggested by HPLC and MS analyses.

Overall, the results showed that the reactions in which acetaldehyde is involved exert important effects in the interactions between polyphenolic compounds and salivary proteins.

Therefore, the management of the acetaldehyde is to be properly addressed throughout all the stages of the winemaking process.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Francesca Coppola, Martino Forino, Alessandra Rinaldi, Luigi Picariello, Massimo Iorizzo, Luigi Moio, Angelita Gambuti

Presenting author

Francesca Coppola – Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy

Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy | Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Campobasso, Italy, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy

Contact the author

Keywords

Acetaldehyde, Precipitation of Salivary Proteins, Red wine, Phenolic compounds

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Evolution of biogenic amines content in wine during sample conservation – method optimisation for analysis of biogenicamines

The present paper reports the development of an optimized method for simultaneous analysis of
8 biogenic amines (Histamine, Methylamine, Ethylamine, Tyramine, Putrescine, Cadaverine, Phenethylamine, and Isoamylamine). It is based on a method developed by Gomez-Alonso et al. in 2007.

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

Main viticultural soils in Castilla – La Mancha (Spain)

Castilla-La Mancha is the biggest vineyard in the world. Once similar soils have been identified in Castilla-La Mancha (soil

Modelling leaf water potential from physiological and meteorological variables – A machine learning approach

Viticulture is a key economic sector in the mediterranean region. However, climate change is affecting global viticulture, increasing the frequency of heatwaves and drought events.