WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Non Saccharomyces wine yeasts: emerging trends and challenges in winemaking

Non Saccharomyces wine yeasts: emerging trends and challenges in winemaking

Abstract

In the past, the contribution of non-Saccharomyces yeasts in winemaking has always been considered negative for their limited enological attitude if compared with Saccharomyces cerevisiae. In recent decades there has been a reevaluation of the role of non-Saccharomyces wine yeasts especially when used in combination and in support with S. cerevisiae (mixed fermentation). In this regard, selected non-Saccharomyces yeasts could be profitable used to give distinctive features, to enhance flavor and aroma complexity and to reduce the ethanol content of wines. Further emerging trends in the use of these yeasts are related to their role as bioprotectants and producers of health promoters compounds.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Maurizio CIANI

Presenting author

Maurizio CIANI – Polytechnic Univ. Marche, Italy

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Insight on Lugana flavor with a new LC-MS method for the detection of polyfunctional thiols

The analysis of polyfunctional thiols in wine is challenging due to their low abundance and instability within a complex matrix. However, volatile thiols are highly aroma-active, making their accurate quantification in wine at low concentrations crucial [1].

Influence of phenolic composition and antioxidant properties on the ageing potential of Syrah red wines measured by accelerated ageing tests.

Red wine ageing impacts its chemical and sensory characteristics such as colour, astringency and aromas evolution. Wine ageing involves many chemicals and physico-chemical reactions. Oxygen has an important role in these evolutions, especially during bottle ageing. It is known that wine composition and its antioxidant capacity are correlated to its ability to undergo with oxygen exposure [1]. A high oxygen exposure can affect wine quality by the formation of undesirable oxidative volatile compounds such as acetaldehyde [2]. Thus, ageing capacity is an important factor for wine quality and is related to extent of oxidation with ageing [3].

Terroir Hesse – Soil determines wine style

The project “Terroir Hesse” works out the main type and characteristics of soil-based terroirs and the resulting wine styles for the hessian wine-growing regions Rheingau and Hessian Bergstrasse.

Characterization of simple polyphenols in seeds of autochthonous grapevine varieties grown in Croatia (Vitis vinifera L.)

Croatia has rich grapevine genetic resources with more than 125 autochthonous varieties preserved. Coastal region of Croatia, Dalmatia, is well known for wine production based on autochthonous grapevine varieties. Nevertheless, only couple of these are widely cultivated and have greater economic importance. Grape seeds are sources of polyphenols which play an important role in organoleptic and nutritional value of grape and wine. Hence, the aim of this study was to evaluate the simple polyphenols from grape seeds in 20 rare autochthonous grapevine varieties.

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.