WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Aroma compounds involved in the fruity notes of red wines potentially adapted to climate change.

Aroma compounds involved in the fruity notes of red wines potentially adapted to climate change.

Abstract

Currently, climate change represents one of the major issues for the wine sector. The increasing temperature already recorded and expected in the upcoming years reduce the vegetative cycle of the grape varieties planted in Bordeaux area, affecting the physicochemical parameters of grapes and consequently, the quality of wine. From a sensory point of view, the attenuation of the fresh fruity character in some varietals is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive and ecological strategy on global warming, some winegrowers have initiated changes in the Bordeaux blend of vine varieties using late-ripening grape varieties [2]. 

This study intends to explore the fruitiness in wines produced from grape varieties adapted to the future climate of Bordeaux. 10 commercial single–varietal wines from 2018 vintage made from the main grape varieties in the Bordeaux region (Cabernet franc, Cabernet-Sauvignon and Merlot) as well as from indigenous grape varieties from the Mediterranean basin, such as Cyprus (Yiannoudin), France (Syrah), Greece (Agiorgitiko and Xinomavro), Portugal (Touriga Nacional) and Spain (Garnacha and Tempranillo), were selected among 19 samples using sensory descriptive analyses. 

Both sensory and instrumental analyses were coupled, to investigate their fruity aroma expression. For sensory analysis, samples were prepared from wine, using a semi preparative HPLC method which preserves wine aroma and isolates fruity characteristics in 25 specific fractions [3,4]. Fractions of interest with intense fruity aromas were sensorially selected for each wine by a trained panel and mixed with ethanol and microfiltered water to obtain fruity aromatic reconstitutions (FAR) [5]. A free sorting task was applied to categorize FAR according to their similarities or dissimilarities, and different clusters were highlighted. Instrumental analysis of the different FAR and wines demonstrated variations in their molecular composition. 

Results obtained from sensory and gas chromatography analysis enrich the knowledge of the fruity expression of red wines from “new” grape varieties opening up new perspectives in wine technology, including blending, thus providing new tools for producers.

References

[1] Pons, A. et al. (2017)
[2] Van Leeuwen, C. et al. (2019)
[3] Ferreira, V. et al. (1999)
[4] Pineau, B. (2007)
[5] Lytra, G. (2012)

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Justine Garbay, Margaux Cameleyre, Nicolas Le Menn, Jean-Christophe Barbe , Georgia Lytra

Presenting author

Justine Garbay – PhD student in Oenology – Institut des Sciences de la Vigne et du Vin

Institut des Sciences de la Vigne et du Vin | Institut des Sciences de la Vigne et du Vin | Institut des Sciences de la Vigne et du Vin | Institut des Sciences de la Vigne et du Vin 

Contact the author

Keywords

aromatic compounds – climate change – fruity notes – late-ripening varieties – red wine

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

Effect of vineyard management strategy on the nutritional status of irrigated « Tempranillo » vineyards grown in semi-arid areas

The combination of cover crops with regulated deficit irrigation has been lately shown to be a good method to improve harvest quality in irrigated vineyards of Southern Europe with semiarid climate, as an alternative to the conventional management, that consists on mechanical tillage and irrigation from fruitset to veraison and from then on reduced, or even ended.

Grapevine bud fertility under elevated carbon dioxide

Aims: Microscopic bud dissection is a common tool used to assess grapevine bud fertility and therefore to predict the yield of the following season

Climate change – variety change?

In Franconia, the northern part of Bavaria in Germany, climate change, visible in earlier bud break, advanced flowering and earlier grape maturity, leads to a decrease of traditionally cultivated early ripening aromatic white wine varieties as Mueller-Thurgau (30 % of the wine growing area) and Bacchus (12 %). With the predicted rise of temperature in all European wine regions the conditions for white wine grape varieties will decline and the grapes themselves will lose a part of their aromatic and fruity expression. Variety change towards the cultivation of later ripening white wine varieties is a very expensive and long-term process, and must be accompanied by special marketing efforts.