WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Impact of aspects of the polysaccharide structure of mannoproteins on their interactions with Enological Tannins

Impact of aspects of the polysaccharide structure of mannoproteins on their interactions with Enological Tannins

Abstract

Mannoproteins (MPs) with different structure of their polysaccharide part (branching, substitutions, …) were used to better understand the impact of characteristics of the usual structure of MPs when interacting with Grape Seed Tannins (ST). 

From four Saccharomyces cerevisiae strains we obtain four MP pools: an enological strain LMD47 (presenting high levels of N-glycosylation and O-Mannosylation), a wild-type BY4742 strain (used as reference), and its mutants ΔMnn4 (with no mannosyl-phosphorylation) and ΔMnn2 (with a linear N-glycosylation backbone). The extraction method applied, with the exclusive enzymatic activity of Endo-β-1,3-Glucanase of Trichoderma sp. (E-LAMSE, Megazym), preserved the indigenous structure of mannoproteins to their utmost extent. Characterizations of the pools confirmed differences among the polysaccharide moieties of the four MPs regarding charge, mannose/glucose ratio, and branching degrees but no differences between their protein moieties.

The formation and evolution of colloidal aggregates due to interactions between MPs and ST at different concentrations were evaluated through Dynamic Light Scattering (DLS), while the number of colloidal aggregates formed and the particle size distribution were assessed by Nanoparticle Tracking Analysis (NTA). The possible differences in the mechanisms of interaction among the four kinds of mannoproteins were analyzed through Isothermal Titration Calorimetry (ITC).

DLS and NTA experiments indicated an immediate formation of colloidal aggregates, in which the final particle size and concentration were dependent on the ST/MP ratio. Whenever the latter was extremely high, a very progressive flocculation related to a reversible aggregation occurred. The kinetics of this instability phenomenon was dependent on the polysaccharide structure of MPs. ITC analysis showed two different kinds of interactions: an intense exothermic one susceptible to temperature, and a much weaker interaction (as for enthalpy release) less thermo-dependent, possibly related to H-bonding and hydrophobic interactions, respectively. 

Neither the absence of mannosyl phosphate groups, the absence of ramifications on the outer chains of the N-glycosylation, nor the protein glycosylation overexpression seem to play a decisive role in those interactions. However, these structural differences affected the stability of MP-ST colloids formed at specific concentrations and slightly changed the enthalpy exchange profiles.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Assunção Bicca, Céline, Poncet-Legrand, Julie, Mekoue Nguela, Thierry, Doco, Aude, Vernhet

Presenting author

Assunção Bicca – Université de Montpellier

Unité Mixte de Recherche Sciences Pour l’OEnologie, Institut Agro, INRAE, Université de Montpellier, Montpellier, France | Lallemand SAS | Unité Mixte de Recherche Sciences Pour l’OEnologie

Contact the author

Keywords

Mannoproteins – Colloidal Stability – Polysaccharide/Polyphenol Interactions – Wine macromolecules

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Yeast derivatives: an innovative approach to produce Oenococcus oeni under biofilm form?

The malolactic fermentation can occur naturally or be induced by inoculation of selected bacterial strains, most commonly of Oenococcus oeni.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Unveiling the unknow aroma potential of Port wine fortification spirit taking advantage of the comprehensive two-dimensional gas chromatography

Port wine is a fortified wine exclusively produced in the Douro Appellation (Portugal) under very specific conditions resulting from natural and human factors. Its intrinsic aroma characteristics are modulated upon a network of factors, such as the terroir, varieties and winemaking procedures that include a wide set of steps, namely the fortification with grape spirit (ca. 77% v/v ethanol).

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.