WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Impact of aspects of the polysaccharide structure of mannoproteins on their interactions with Enological Tannins

Impact of aspects of the polysaccharide structure of mannoproteins on their interactions with Enological Tannins

Abstract

Mannoproteins (MPs) with different structure of their polysaccharide part (branching, substitutions, …) were used to better understand the impact of characteristics of the usual structure of MPs when interacting with Grape Seed Tannins (ST). 

From four Saccharomyces cerevisiae strains we obtain four MP pools: an enological strain LMD47 (presenting high levels of N-glycosylation and O-Mannosylation), a wild-type BY4742 strain (used as reference), and its mutants ΔMnn4 (with no mannosyl-phosphorylation) and ΔMnn2 (with a linear N-glycosylation backbone). The extraction method applied, with the exclusive enzymatic activity of Endo-β-1,3-Glucanase of Trichoderma sp. (E-LAMSE, Megazym), preserved the indigenous structure of mannoproteins to their utmost extent. Characterizations of the pools confirmed differences among the polysaccharide moieties of the four MPs regarding charge, mannose/glucose ratio, and branching degrees but no differences between their protein moieties.

The formation and evolution of colloidal aggregates due to interactions between MPs and ST at different concentrations were evaluated through Dynamic Light Scattering (DLS), while the number of colloidal aggregates formed and the particle size distribution were assessed by Nanoparticle Tracking Analysis (NTA). The possible differences in the mechanisms of interaction among the four kinds of mannoproteins were analyzed through Isothermal Titration Calorimetry (ITC).

DLS and NTA experiments indicated an immediate formation of colloidal aggregates, in which the final particle size and concentration were dependent on the ST/MP ratio. Whenever the latter was extremely high, a very progressive flocculation related to a reversible aggregation occurred. The kinetics of this instability phenomenon was dependent on the polysaccharide structure of MPs. ITC analysis showed two different kinds of interactions: an intense exothermic one susceptible to temperature, and a much weaker interaction (as for enthalpy release) less thermo-dependent, possibly related to H-bonding and hydrophobic interactions, respectively. 

Neither the absence of mannosyl phosphate groups, the absence of ramifications on the outer chains of the N-glycosylation, nor the protein glycosylation overexpression seem to play a decisive role in those interactions. However, these structural differences affected the stability of MP-ST colloids formed at specific concentrations and slightly changed the enthalpy exchange profiles.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Assunção Bicca, Céline, Poncet-Legrand, Julie, Mekoue Nguela, Thierry, Doco, Aude, Vernhet

Presenting author

Assunção Bicca – Université de Montpellier

Unité Mixte de Recherche Sciences Pour l’OEnologie, Institut Agro, INRAE, Université de Montpellier, Montpellier, France | Lallemand SAS | Unité Mixte de Recherche Sciences Pour l’OEnologie

Contact the author

Keywords

Mannoproteins – Colloidal Stability – Polysaccharide/Polyphenol Interactions – Wine macromolecules

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.

Towards a better understanding of the root system diversity and plasticityin young grafted vines using 2D imaging and 3D modelling tools

Three-dimensional functional-structural root architecture models, which decompose the root system architecture (RSA) into elementary developmental processes such as root emission, axial growth, branching patterns and tropism have become useful tools for (i) reconstructing in silico the spatial and temporal dynamics of root systems in a soil volume, (ii) analyzing their genotypic diversity and plasticity to the environment, and (iii) overcoming the bottleneck associated with their visualization and measurement in situ. Here, we present an original work on RSA phenotyping and modelling in grapevine. First, we developed 2D image-based analysis pipelines to quantify morphological and architectural traits in young grafts. Second, we parametrized and validated the 3D root model Archisimple on two rootstock genotypes (RGM, 1103P) grafted with V. vinifera Cabernet-Sauvignon and grown in different controlled conditions (rhizotrons, pots, tubes).

Skin And Seed Extracts Differently Behave Towards Salivary Proteins

Background: Polyphenols extracted from skins and seeds showed different sensory attributes including astringency and bitterness. In previous studies, it has been demonstrated that extracts obtained either from skins or seeds interact differently with salivary proteins.

Firmness of the grapes. Mechanical tests and definition of indices. Study of the evolution of berry skin resistance during alcoholic fermentation

The mechanical strength or firmness of a fruit is considered an important parameter to characterize its state of maturity or conservation, as other parameters such as sugar level or color.

Exploring the behavior of alternatives to montmorillonite clays in white wine protein stabilization

Visual clarity in wines is crucial for commercial purposes [1]. Potential protein haze in white wines remains a constant concern in wineries, commonly addressed using bentonite [2].