WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Enhanced polyphenol extraction during Pinot Noir and Cabernet Sauvignon wine making

Enhanced polyphenol extraction during Pinot Noir and Cabernet Sauvignon wine making

Abstract

The quality of red wine depends on the composition of polyphenols influencing wine color and taste. The question is, how much we must fear over extraction, especially of seed tannins, under cool climate conditions. The extraction of polyphenols from grape skins and grape seeds were investigated for the grape varieties Cabernet Sauvignon and Pinot noir. The experimental setup included seed removal, milling the seeds or the cap and returning them back, crushing the whole grapes prior fermentation, acidification of must as well as different techniques for the cap management. In 2018 as well as in 2019 the adaption of the enology in terms of maceration time, chaptalization and deacidification, depending on harvest time had been investigated. Photometric assays were used to determine total phenols, tannins and polymeric pigments. Anthocyanins and monomeric phenols were analyzed by HPLC-DAD/FD. Flavan-3-ol dimers and trimers as well as corresponding gallates were quantified by LC-QToF-MS. After bottling, descriptive sensory analysis was performed. The results showed that after seed removal, total phenolics and color intensity decreased. Crushing the seeds significantly increased total phenols, tannins, gallic acid and, for Pinot noir, also Large Polymeric Pigments. Additionally, a darker wine color was observed, indicating the importance of seed polyphenols for color stability. Acidification of must significantly contributed to wine color due to Small Polymeric Pigments, which were most likely formed by enhanced protonation of acetaldehyde, stimulating the formation of ethylidene-linked structures. Furthermore, catechin-catechin-gallate concentration was significantly increased due to acidification. This dimer may be released by the acid-catalyzed cleavage of interflavan bonds of higher molecular weight procyanidins. The sensory attributes color intensity, astringency, dry tannins and bitterness were the differentiating factors among the treatments. Crushing the seeds or the cap lead to the higher perception of phenol related in mouth modalities. The acidification of must leads to a significantly darker wine color while wines with seed removal lack in color and phenolic structure. Regarding time point of harvesting and technological maturity it seems the classical adjustment by means of sugar concentration is not able to simulate phenolic ripeness.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Pascal, Wegmann-Herr, Dominik, Durner, Germany, Sandra, Feifel, Fabian, Weber

Presenting author

Pascal, Wegmann-Herr – Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany

Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany | Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany | University of Bonn, Institute for Food Technology, Germany

Contact the author

Keywords

Phenols, Sensory, Extraction, Maturity, Red Varieties

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The development of a simple electrochemical method based on molecularly imprinted polymers for the selective determination of caffeic acid in wine

Caffeic acid (CA) is an antioxidant of great importance in the food sector, such as wine, where it acts as a marker of wine ageing, as well as in the health sector due to its antioxidant properties and beneficial effects including the prevention of inflammation, cancer, neurodegenerative diseases, and diabetes.

Foliar application of specific inactivated yeast to enhance the varietal aroma precursors accumulation on cv. Traminer

The production of grapes with a balanced composition is one of the main goals that agronomists and oenologists pursue to produce premium quality wines.

Terroir or Tūrangawaewae? Expressing sense of place in an emerging New Zealand wine region

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Throughout centuries of anthropocentric breeding, plants have been selectively bred to enhance their quality traits and yield, often overlooking the importance of neglected attributes, like those involved in the interactions with beneficial microorganisms. This phenomenon led to an alteration in the distribution of photosynthetic products, shifting from defence mechanisms to growth, commonly described as ‘domestication syndrome’. Addressing the losses stemming from this condition is imperative just as unravelling the concealed communication between grapevines and beneficial microorganisms.

Dialing in remote measurements of grapevine water stress by incorporating whole plant physiological responses

Context and purpose of the study. Current remote sensing strategies rely heavily on reflectance data and energy balance modelling using thermal imagery to estimate crop water use and stress.