WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Enhanced polyphenol extraction during Pinot Noir and Cabernet Sauvignon wine making

Enhanced polyphenol extraction during Pinot Noir and Cabernet Sauvignon wine making

Abstract

The quality of red wine depends on the composition of polyphenols influencing wine color and taste. The question is, how much we must fear over extraction, especially of seed tannins, under cool climate conditions. The extraction of polyphenols from grape skins and grape seeds were investigated for the grape varieties Cabernet Sauvignon and Pinot noir. The experimental setup included seed removal, milling the seeds or the cap and returning them back, crushing the whole grapes prior fermentation, acidification of must as well as different techniques for the cap management. In 2018 as well as in 2019 the adaption of the enology in terms of maceration time, chaptalization and deacidification, depending on harvest time had been investigated. Photometric assays were used to determine total phenols, tannins and polymeric pigments. Anthocyanins and monomeric phenols were analyzed by HPLC-DAD/FD. Flavan-3-ol dimers and trimers as well as corresponding gallates were quantified by LC-QToF-MS. After bottling, descriptive sensory analysis was performed. The results showed that after seed removal, total phenolics and color intensity decreased. Crushing the seeds significantly increased total phenols, tannins, gallic acid and, for Pinot noir, also Large Polymeric Pigments. Additionally, a darker wine color was observed, indicating the importance of seed polyphenols for color stability. Acidification of must significantly contributed to wine color due to Small Polymeric Pigments, which were most likely formed by enhanced protonation of acetaldehyde, stimulating the formation of ethylidene-linked structures. Furthermore, catechin-catechin-gallate concentration was significantly increased due to acidification. This dimer may be released by the acid-catalyzed cleavage of interflavan bonds of higher molecular weight procyanidins. The sensory attributes color intensity, astringency, dry tannins and bitterness were the differentiating factors among the treatments. Crushing the seeds or the cap lead to the higher perception of phenol related in mouth modalities. The acidification of must leads to a significantly darker wine color while wines with seed removal lack in color and phenolic structure. Regarding time point of harvesting and technological maturity it seems the classical adjustment by means of sugar concentration is not able to simulate phenolic ripeness.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Pascal, Wegmann-Herr, Dominik, Durner, Germany, Sandra, Feifel, Fabian, Weber

Presenting author

Pascal, Wegmann-Herr – Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany

Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany | Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany | University of Bonn, Institute for Food Technology, Germany

Contact the author

Keywords

Phenols, Sensory, Extraction, Maturity, Red Varieties

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Formation And Evolution Of Minty Terpenoids During Model Ageing Of Cabernet Franc And Merlot Wines

In recent years, a pool of terpenoids possibly implicated in minty odours and in the appreciable refreshing sensation, has been identified in long aged red Bordeaux wines (Lisanti et al., 2021, Picard et al., 2016; Picard et al., 2017). These compounds were found to play a key role in the so-called “ageing bouquet”, that can be defined as “the homogeneous, harmonious flavour resulting from the complex transformation process in wine during bottle storage” (Picard et al., 2015). Moreover the minty-fresh sensory dimension in fine aged red wines plays an important role in typicity judgement by wine professionals (Picard et al., 2015).

Towards a regional mapping of vine water status based on crowdsourcing observations

Monitoring vine water status is a major challenge for vineyard management because it influences both yield and harvest quality. It is also a challenge at the territorial scale for identifying periods of high water restriction or zones regularly impacted by water stress. This information is of major importance for defining collective strategies, anticipating harvest logistic or applying for irrigation authorisation. At this spatial scale, existing tools and methods for monitoring vine water status are few and often require strong assumptions (e.g. water balance model). This paper proposes to consider a collaborative collection of observations by winegrowers and wine industry stakeholders (crowdsourcing) as an interesting alternative. Indeed, it allows the collection of a large number of field observations while pooling the collection effort. However, the feasibility of such a project and its interest in monitoring vine water status at regional scale has never been tested.

The objective of this article is to explore the possibility of making a regional map of vine water status based on crowdsourcing observations. It is based on the study of the free mobile application ApeX-Vigne, which allows the collection of observations about vine shoot growth. This information is easy to collect and can be considered, under certain conditions, as a proxy for vine water status. This article presents the first results obtained from the nearly 18,000 observations collected by winegrowers and wine industry stakeholders during 2019, 2020 and 2021 seasons. It presents the vine shoot growth maps obtained at regional scale and their evolution over the three vintages studied. It also proposes an analysis of the factors that favoured the number of observations collected and those that favoured their quality. These results open up new perspectives for monitoring vine water status at a regional scale but above they provide references for other crowdsourcing projects in viticulture.

Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Different from wild species in arid and semiarid conditions, cultivated species are very sensitive to drought and, beyond some stress thresholds, food production is not possible

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.