WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Enhanced polyphenol extraction during Pinot Noir and Cabernet Sauvignon wine making

Enhanced polyphenol extraction during Pinot Noir and Cabernet Sauvignon wine making

Abstract

The quality of red wine depends on the composition of polyphenols influencing wine color and taste. The question is, how much we must fear over extraction, especially of seed tannins, under cool climate conditions. The extraction of polyphenols from grape skins and grape seeds were investigated for the grape varieties Cabernet Sauvignon and Pinot noir. The experimental setup included seed removal, milling the seeds or the cap and returning them back, crushing the whole grapes prior fermentation, acidification of must as well as different techniques for the cap management. In 2018 as well as in 2019 the adaption of the enology in terms of maceration time, chaptalization and deacidification, depending on harvest time had been investigated. Photometric assays were used to determine total phenols, tannins and polymeric pigments. Anthocyanins and monomeric phenols were analyzed by HPLC-DAD/FD. Flavan-3-ol dimers and trimers as well as corresponding gallates were quantified by LC-QToF-MS. After bottling, descriptive sensory analysis was performed. The results showed that after seed removal, total phenolics and color intensity decreased. Crushing the seeds significantly increased total phenols, tannins, gallic acid and, for Pinot noir, also Large Polymeric Pigments. Additionally, a darker wine color was observed, indicating the importance of seed polyphenols for color stability. Acidification of must significantly contributed to wine color due to Small Polymeric Pigments, which were most likely formed by enhanced protonation of acetaldehyde, stimulating the formation of ethylidene-linked structures. Furthermore, catechin-catechin-gallate concentration was significantly increased due to acidification. This dimer may be released by the acid-catalyzed cleavage of interflavan bonds of higher molecular weight procyanidins. The sensory attributes color intensity, astringency, dry tannins and bitterness were the differentiating factors among the treatments. Crushing the seeds or the cap lead to the higher perception of phenol related in mouth modalities. The acidification of must leads to a significantly darker wine color while wines with seed removal lack in color and phenolic structure. Regarding time point of harvesting and technological maturity it seems the classical adjustment by means of sugar concentration is not able to simulate phenolic ripeness.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Pascal, Wegmann-Herr, Dominik, Durner, Germany, Sandra, Feifel, Fabian, Weber

Presenting author

Pascal, Wegmann-Herr – Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany

Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany | Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany | University of Bonn, Institute for Food Technology, Germany

Contact the author

Keywords

Phenols, Sensory, Extraction, Maturity, Red Varieties

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Politics meets terroir. The story of Prosecco – Are GI’s just a protectionist racket?

The recent Free Trade Agreement negotiations between Australia and the European Union have again put the issue of Geographical Indications (GIs) in the spotlight. Australia has long demonstrated its understanding of GIs and maintains a clear and rigorous GI protection system for wine. For many years, Australia’s wine sector was a strong advocate for GIs and a strong system to protect the

Influenza del sito di coltivazione nella espressione aromatica del Moscato liquoroso di Pantelleria

ln 1997, twenty six cultivation sites of cv. Muscat of Alexandria different for pedological conditions, altitude and exposition were selected through ail Pantelleria isle. ln each site, described and classified according to USDA Soil Taxonony and FAO Soil Classification methods, grapes, collected at technological ripening, were microvinificated, following a standard procedure which allowed to obtain the naturally sweet wine DOC Moscato di Pantelleria. Wines, five months after vinification, were analysed by gaschromatography.

What is the fate of oxygen consumed by red wine? Main processes and reaction products

Oxygen consumed by wine is used to oxidize sulfur dioxide and ethanol to form acetaldehyde wine oxygen consumption rate (OCR) was negatively correlated with the initial acetaldehyde level.

Effect of Quercus Alba oak barrels from different forests on the polyphenolic composition of Tempranillo red wines

The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily in the states of Virginia, Missouri, Kentucky, Oregon, Ohio, Minnesota, Wisconsin and California. The aim of this study was to analyze how the choice of barrels made with Quercus Alba oak from different geographic areas of the United States (Missouri, Kentucky, Ohio and Pennsylvania) influences the polyphenolic composition of Tempranillo red wines.

Research on the origin and the side effects of chitosan stabilizing properties in wine

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species.