WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Enhanced polyphenol extraction during Pinot Noir and Cabernet Sauvignon wine making

Enhanced polyphenol extraction during Pinot Noir and Cabernet Sauvignon wine making

Abstract

The quality of red wine depends on the composition of polyphenols influencing wine color and taste. The question is, how much we must fear over extraction, especially of seed tannins, under cool climate conditions. The extraction of polyphenols from grape skins and grape seeds were investigated for the grape varieties Cabernet Sauvignon and Pinot noir. The experimental setup included seed removal, milling the seeds or the cap and returning them back, crushing the whole grapes prior fermentation, acidification of must as well as different techniques for the cap management. In 2018 as well as in 2019 the adaption of the enology in terms of maceration time, chaptalization and deacidification, depending on harvest time had been investigated. Photometric assays were used to determine total phenols, tannins and polymeric pigments. Anthocyanins and monomeric phenols were analyzed by HPLC-DAD/FD. Flavan-3-ol dimers and trimers as well as corresponding gallates were quantified by LC-QToF-MS. After bottling, descriptive sensory analysis was performed. The results showed that after seed removal, total phenolics and color intensity decreased. Crushing the seeds significantly increased total phenols, tannins, gallic acid and, for Pinot noir, also Large Polymeric Pigments. Additionally, a darker wine color was observed, indicating the importance of seed polyphenols for color stability. Acidification of must significantly contributed to wine color due to Small Polymeric Pigments, which were most likely formed by enhanced protonation of acetaldehyde, stimulating the formation of ethylidene-linked structures. Furthermore, catechin-catechin-gallate concentration was significantly increased due to acidification. This dimer may be released by the acid-catalyzed cleavage of interflavan bonds of higher molecular weight procyanidins. The sensory attributes color intensity, astringency, dry tannins and bitterness were the differentiating factors among the treatments. Crushing the seeds or the cap lead to the higher perception of phenol related in mouth modalities. The acidification of must leads to a significantly darker wine color while wines with seed removal lack in color and phenolic structure. Regarding time point of harvesting and technological maturity it seems the classical adjustment by means of sugar concentration is not able to simulate phenolic ripeness.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Pascal, Wegmann-Herr, Dominik, Durner, Germany, Sandra, Feifel, Fabian, Weber

Presenting author

Pascal, Wegmann-Herr – Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany

Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany | Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany | University of Bonn, Institute for Food Technology, Germany

Contact the author

Keywords

Phenols, Sensory, Extraction, Maturity, Red Varieties

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Application of remote sensing by unmanned aerial vehicles to map variability in Ontario Riesling and Cabernet Franc vineyards

The objective of this investigation was to verify usefulness of proximal sensing technology and unmanned aerial vehicles (UAVs) for mapping variables e.g., vine size (potential vigor), soil and vine water status, yield, fruit composition, and virus incidence in vineyards.

Water and physiological response to early leaf removal of cv. Verdejo in rainfed conditions, at different times of the day, in the D.O. Rueda (Spain)

Aim: Early leaf removal, generally applied before flowering, is mostly conceived as a technique to control grape yield and improve the health of grapes and focused on the final objective of increasing wine quality.

Possible Reduction Method Of Volatile Acid Content And Polyphenols Of Tokaj Aszú Wines With The Aid Of Citosan Bactericid Wine-Treatments

The historical Tokaj region in northeast Hungary is a UNESCO World Heritage region since 2002 owning 5.500 ha vineyards. Produced from „noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil circumstances (clay, loess on volcanic bedrock) and grape-varieties (Furmint, Hárslevelű) of Tokaj-region offer favourable parameters to the formation of noble rot caused by Botrytis cinerea. The special metabolic activity of Botrytis results in noble rot grapes called “aszú” berries. The grapes undergo complex chemical modifications as the joint result of the enzymatic activity of Botrytis and the physical process of concentration.

Le Pinot noir dans la zone AOC des “Colli Orientali del Friuli” (nord-est de l’Italie) : influence de la forme de taille sur les paramètres viticoles et œnologiques du raisin et du vin

Pinot noir is an interesting vat variety for the high quality products it provides in the most suitable areas. In France, the most important Pinot Noir growing areas are Burgundy, Champagne, Alsace and the Loire. In Italy, Pinot Noir is grown almost exclusively in the northern regions of Trentino-Alto Adige, Lombardy and Friuli-Venezia Giulia.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.