WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Enhanced polyphenol extraction during Pinot Noir and Cabernet Sauvignon wine making

Enhanced polyphenol extraction during Pinot Noir and Cabernet Sauvignon wine making

Abstract

The quality of red wine depends on the composition of polyphenols influencing wine color and taste. The question is, how much we must fear over extraction, especially of seed tannins, under cool climate conditions. The extraction of polyphenols from grape skins and grape seeds were investigated for the grape varieties Cabernet Sauvignon and Pinot noir. The experimental setup included seed removal, milling the seeds or the cap and returning them back, crushing the whole grapes prior fermentation, acidification of must as well as different techniques for the cap management. In 2018 as well as in 2019 the adaption of the enology in terms of maceration time, chaptalization and deacidification, depending on harvest time had been investigated. Photometric assays were used to determine total phenols, tannins and polymeric pigments. Anthocyanins and monomeric phenols were analyzed by HPLC-DAD/FD. Flavan-3-ol dimers and trimers as well as corresponding gallates were quantified by LC-QToF-MS. After bottling, descriptive sensory analysis was performed. The results showed that after seed removal, total phenolics and color intensity decreased. Crushing the seeds significantly increased total phenols, tannins, gallic acid and, for Pinot noir, also Large Polymeric Pigments. Additionally, a darker wine color was observed, indicating the importance of seed polyphenols for color stability. Acidification of must significantly contributed to wine color due to Small Polymeric Pigments, which were most likely formed by enhanced protonation of acetaldehyde, stimulating the formation of ethylidene-linked structures. Furthermore, catechin-catechin-gallate concentration was significantly increased due to acidification. This dimer may be released by the acid-catalyzed cleavage of interflavan bonds of higher molecular weight procyanidins. The sensory attributes color intensity, astringency, dry tannins and bitterness were the differentiating factors among the treatments. Crushing the seeds or the cap lead to the higher perception of phenol related in mouth modalities. The acidification of must leads to a significantly darker wine color while wines with seed removal lack in color and phenolic structure. Regarding time point of harvesting and technological maturity it seems the classical adjustment by means of sugar concentration is not able to simulate phenolic ripeness.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Pascal, Wegmann-Herr, Dominik, Durner, Germany, Sandra, Feifel, Fabian, Weber

Presenting author

Pascal, Wegmann-Herr – Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany

Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany | Institute for Viticulture and Enology (DLR-Rheinpfalz), Breitenweg 71, 67435 Neustadt, Germany | University of Bonn, Institute for Food Technology, Germany

Contact the author

Keywords

Phenols, Sensory, Extraction, Maturity, Red Varieties

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Hplc-ms analysis of carotenoids as potential precursors for 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in riesling grapes

In recent years, an undesirable premature “aged” character has been noticed in a growing number of young Riesling wines, associated with extreme weather conditions leading to increased radiation intensity and/ or sun exposure of grapes.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Decline of rootstock-mediated physiological responses in Tempranillo grapevines by prolonged extreme conditions

Agriculture faces many global warming challenges especially in the Mediterranean region. Many strategies have been proposed in viticulture to manage global warming. Rootstocks are among them since they may affect water uptake and the scion’s performance.
The study conducted in La Rioja, Spain, aimed to investigate the impact of different rootstocks (1103P and 161-49C) on the performance of the Tempranillo grapevine scion over a three-day cycles under drought and extreme conditions, specifically during a heatwave in July 2022, with maximum air temperatures up to 40ºC and average daily temperatures of 29.1ºC.

Response of Albariño to local environmental conditions in Uruguay

Albariño is a white cultivar that has been recently promoted in Uruguay due to its ability to maintain high berry quality even in adverse climate conditions during ripening. This study aims to assess the effect of different topographic conditions on Albariño agronomic behavior and oenological potential.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.