WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Pure wine vs natural wine

Pure wine vs natural wine

Abstract

English version below

Vins purs VS vins natures.

S’il n’existe pas de réglementation officielle, la démarche des vins naturels prône un retour aux pratiques dites ancestrales préconisant notamment un mode d’élaboration des vins utilisant le moins d’intrants possible. Le seul autorisé reste l’anhydride sulfureux (SO2) à des doses quatre à cinq fois moins importantes que pour les vins dits conventionnels. Ce désir de renouer avec des pratiques anciennes et plus respectueuses des sols, du végétal et du produit vin trouverait-il un fondement historique ? 
Les textes et les ouvrages, notamment ceux des XVIIe et XVIIIe siècles, mentionnent des vins « bon, pur, loyal et marchand ». Qu’entend-on alors par un vin pur ? Pourrait-on trouver dans cette définition les prémices des vins naturels ? 
La littérature domestique et gastronomique étant très fournie sur cette période, la consultation d’auteurs tels que Nicolas de Bonnefons, Besnier, Angran de Rueneuve, Louis Liger d’Auxerre, Lemery et bien d’autres lève le voile sur les pratiques viticoles et vineuses d’une époque où cette notion de vin pur revient assez fréquemment. Élaboration, vinifications, élevage, conservation des vins, traitements, ces pratiques de l’époque moderne annoncent-elles la philosophie adoptée par les vins naturels d’aujourd’hui ?

Although there is no formal regulation, the natural wine approach calls for a return to ancestral practices, which include a wine making process using as few inputs as possible.
The only one authorized is sulphur dioxide (SO2) at doses four to five times lower than for conventional wine. 
Would this desire to reconnect with old practices , more respectful of soils, plants and wine has a historical basis?
Books, especially those of the 17th and 18th centuries, mention wines which must be “good, pure, loyal and merchant”. But what is the meaning of a pure wine at that time? Could this be considered as the firstfruit of natural wine?
As domestic and gastronomic literature is very abundant during this period, consulting authors such as Nicolas de Bonnefons, Besnier, Angran de Rueneuve, Louis Liger d’Auxerre, Lemery and many others could shed light on winemaking practices of a time when notion of pure wine comes up quite frequently. Wine making process, vinification, ageing, conservation of wines, treatments, do these practices announce the philosophy adopted by the today natural wine?

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Charlotte Fromont

Presenting author

Charlotte Fromont – CHVV & Chaire UNESCO Culture & tradition du vin

CHVV & Chaire UNESCO Culture & tradition du vin 

Contact the author

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Elucidating white wines peptides: An analytical breaktrough

The chemistry of wine is particularly complex due to biochemical and chemical interactions that significantly modify its organoleptic characteristics and stability over time. Aging on lees is a well-known practice during which various compounds are released, ensuring wines oxidative stability and its overall sensory quality [1,2].

Understanding sweetness of dry wines: first evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages

The gustatory balance of wines relies on sweetness, bitterness and sourness. In dry wines, sweetness does not result from the presence of residual sugar as in sweet wines, but is due to other non-volatile compounds. Such taste-active compounds are released during winemaking, by grapes, yeasts or oak wood and belong numerous chemical families [1]. Beyond this diversity, stereochemistry of molecules can also influence their sensory properties [2]. However, the molecular determinants associated with this taste have only been partially elucidated. Astilbin (2R, 3R) was recently reported to contribute to wine sweetness [3]. As its aglycon contains two stereogenic centers, three other stereoisomers may be present: neoisoastilbin (2S, 3R), isoastilbin (2R, 3S), and neoastilbin (2S, 3S). These compounds have already been observed in natural products, but never in wine. This work aimed at assaying their presence for the first time in wines as well as their taste properties.The isomers were synthesized from astilbin and purified by semi-preparative HPLC.

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.

Leveraging the grapevine drought response to increase vineyard sustainability

In this video recording of the IVES science meeting 2024, Silvina Dayer (PhD in Agronomy, Les Sanctuaires du Mirazur-Groupe Mauro Colagreco, Menton, France) speaks about grapevine drought response to increase vineyard sustainability. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Managing precision irrigation in vineyards: hydraulic and molecular signaling in eight grapevine varieties

Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize vineyard irrigation management and identify the most suitable varieties. In Mediterranean regions, the higher frequency of heat waves and droughts highlights the importance of precision irrigation to meet vine water demands and demonstrates the necessity for a deeper understanding of the different physiological responses among varieties under water stress. In this context, previous reports show an interplay between stomatal regulation of transpiration and changes in leaf hydraulic conductivity, also with the involvement of aquaporins (AQPs), particularly under water stress. However, how those signaling mechanisms are regulated in different grapevine varieties along phenological phases is unclear.