WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Organic and biodynamic sustainable productions and effect on eligibility and peculiarity of a typical wine

Organic and biodynamic sustainable productions and effect on eligibility and peculiarity of a typical wine

Abstract

The wine industry is currently shifting toward more sustainable production systems. There are many reasons for this as the interest of people over climate change and, consequently the wine consumer’s choice toward organic and biodynamic, reduced carbon-footprint, vegan and other environmentally friendly wines. While the viticultural effects of biodynamic and organic practices on wine grapes have been investigated, there is a lack in literature on the general effect on the final quality of wine.

For this purpose, this study sought to evaluate the impact of the organic, biodynamic and conventional production processes on the eligibility and peculiarity of a typical wine, such as Chianti DOCG: commercial Chianti DOCG wines from 2016 and 2017 harvest were selected based on their production management including organic, biodynamic and, conventional. The global quality of a typical wine was defined by three different profiles: the eligibility profile (chemical characteristics such as alcohol concentration, total acidity, pH, and phenolic concentration), the peculiarity or typicality profile defined by the cultivar (aromatic characteristics that originate from the grapes), and the style profile (characteristics that result from winemaking methods). Chemical and sensory analyses were carried out to define the eligibility and typicality profiles of the wines and to evaluate their correlation with the different production techniques. The statistical elaboration of the chemical and sensory data underlined that generally the different wine production techniques did not yield any systematic differences on the eligibility and typicality profiles, except for the higher values of color intensity and polyphenols contents of the organic wines.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Valentina Canuti, Monica Picchi, Francesco Maioli, Lorenzo Cecchi, Luigi Sanarica

Presenting author

Valentina Canuti – Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy

Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence | Department of NEUROFARBA, University of Florence | Enolife SrL, Montemesola (TA)

Contact the author

Keywords

Winemaking process, typicality, quality, sustainable productions

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Effetti del cambiamento climatico europeo sulle epoche di vendemmia in Abruzzo

I dati termo-pluviometrici del periodo 1971-2009 registrati da alcune stazioni della regione Abruzzo sono stati analizzati adottando alcuni semplici indici climatici e bioclimatici. E’ stato valutato il verificarsi di cambiamenti climatici così come le loro ripercussioni sulle date di inizio vendemmia.

Use of pectinolytic yeast in wine fermentations

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input.

The regulation of ABA-induced anthocyanin accumulation in grape berry

Color is a key quality trait for grape berry and the producing wines. Berry color of red genotypes is mainly determined by the quantity and composition of anthocyanins accumulated in the skin and/or pulp. Both genetic and environmental factors could influence the quantity and composition of anthocyanins, while the underlying mechanisms are not fully clear. To explore the mechanisms underlying the diversity of anthocyanin accumulation in grape berry, we compared two grapevine genotypes showing distinct sensitivities to ABA-induced anthocyanin biosynthesis, where one genotype showed minor responses to exogenous ABA application while the other showed significant increase in anthocyanins after exogenous ABA application.

The evolution of the aromatic composition of carbonic maceration wines

The vinification by Carbonic maceration (CM) involves the process whereby the whole bunches are subjected to anaerobic conditions during several days. In this anaerobic condition, the grape endogenous enzymes begin an intracellular fermentation. This situation favors that whole grapes split open and release their juice into the tank, increasing the liquid phase that is fermented by yeasts [1]. Then, two types of wines are obtained; one from the free-run liquid in the tank (FCM) and other from the liquid after pressing the whole grape bunches (PCM). PCM wines are recognized as high quality young wines because their fruity and floral aromas[2] that although they are very intense at the end of the winemaking they gradually disappear during conservation.

Arinto clones tolerant to climate change: in depth transcriptomic study of tolerant and sensitive genotypes

Drought and heat waves deriving from climate change have been affecting grapevine plants and altering wine characteristics in the past years, and effects are expected to get worst. Innovative approaches to address this problem have been undertaken in several varieties, that consist in exploring intravarietal variability to identify genotypes that are tolerant to abiotic stress. Such is the case of the variety Arinto, where an experimental population of 165 clones installed according to a resolvable row-column design with 6 replicates, was scanned for several parameters, including surface leaf temperature (SLT). Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability.