WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Organic and biodynamic sustainable productions and effect on eligibility and peculiarity of a typical wine

Organic and biodynamic sustainable productions and effect on eligibility and peculiarity of a typical wine

Abstract

The wine industry is currently shifting toward more sustainable production systems. There are many reasons for this as the interest of people over climate change and, consequently the wine consumer’s choice toward organic and biodynamic, reduced carbon-footprint, vegan and other environmentally friendly wines. While the viticultural effects of biodynamic and organic practices on wine grapes have been investigated, there is a lack in literature on the general effect on the final quality of wine.

For this purpose, this study sought to evaluate the impact of the organic, biodynamic and conventional production processes on the eligibility and peculiarity of a typical wine, such as Chianti DOCG: commercial Chianti DOCG wines from 2016 and 2017 harvest were selected based on their production management including organic, biodynamic and, conventional. The global quality of a typical wine was defined by three different profiles: the eligibility profile (chemical characteristics such as alcohol concentration, total acidity, pH, and phenolic concentration), the peculiarity or typicality profile defined by the cultivar (aromatic characteristics that originate from the grapes), and the style profile (characteristics that result from winemaking methods). Chemical and sensory analyses were carried out to define the eligibility and typicality profiles of the wines and to evaluate their correlation with the different production techniques. The statistical elaboration of the chemical and sensory data underlined that generally the different wine production techniques did not yield any systematic differences on the eligibility and typicality profiles, except for the higher values of color intensity and polyphenols contents of the organic wines.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Valentina Canuti, Monica Picchi, Francesco Maioli, Lorenzo Cecchi, Luigi Sanarica

Presenting author

Valentina Canuti – Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy

Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence | Department of NEUROFARBA, University of Florence | Enolife SrL, Montemesola (TA)

Contact the author

Keywords

Winemaking process, typicality, quality, sustainable productions

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

(+)-Catechin—laccase oxidation dimeric standards were hemi-synthesized using laccase from Trametes versicolor in a water-ethanol solution at pH 3.6.

New insight the pinking phenomena of white wine

Pinking of white wine is an undesired change potentially occurring over storage, leading to the turning of color from yellow into salmon-red hue.

Waste-free production of non-alcoholic wine as a sustainable technology

The growing demand for non-alcoholic wines, along with issues related to waste disposal and environmental pollution amid military conflicts, natural disasters, and industrial emissions, necessitates the implementation of environmentally sustainable technologies in the winemaking industry.

Supporting wine production from vineyard to glass through secure IoT devices and blockchain

Temperature fluctuations can significantly affect the chemical composition of wine and in turn its taste and aromas.

Metal reducing agents (Fe and Al) as possible agents to measure the dimensions of the hydrogen sulfide (H2S) pool of precursors in wines

Reductive wine fault is characterized by the presence of odors such as rotten eggs or spoiled camembert cheese, originating from hydrogen sulfide (H2S) and methanethiol (MeSH) [1]. These compounds stabilize in polysulfide forms, creating a complex pool of precursors that will revert to both molecules when the environment becomes anoxic [2].