WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Organic and biodynamic sustainable productions and effect on eligibility and peculiarity of a typical wine

Organic and biodynamic sustainable productions and effect on eligibility and peculiarity of a typical wine

Abstract

The wine industry is currently shifting toward more sustainable production systems. There are many reasons for this as the interest of people over climate change and, consequently the wine consumer’s choice toward organic and biodynamic, reduced carbon-footprint, vegan and other environmentally friendly wines. While the viticultural effects of biodynamic and organic practices on wine grapes have been investigated, there is a lack in literature on the general effect on the final quality of wine.

For this purpose, this study sought to evaluate the impact of the organic, biodynamic and conventional production processes on the eligibility and peculiarity of a typical wine, such as Chianti DOCG: commercial Chianti DOCG wines from 2016 and 2017 harvest were selected based on their production management including organic, biodynamic and, conventional. The global quality of a typical wine was defined by three different profiles: the eligibility profile (chemical characteristics such as alcohol concentration, total acidity, pH, and phenolic concentration), the peculiarity or typicality profile defined by the cultivar (aromatic characteristics that originate from the grapes), and the style profile (characteristics that result from winemaking methods). Chemical and sensory analyses were carried out to define the eligibility and typicality profiles of the wines and to evaluate their correlation with the different production techniques. The statistical elaboration of the chemical and sensory data underlined that generally the different wine production techniques did not yield any systematic differences on the eligibility and typicality profiles, except for the higher values of color intensity and polyphenols contents of the organic wines.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Valentina Canuti, Monica Picchi, Francesco Maioli, Lorenzo Cecchi, Luigi Sanarica

Presenting author

Valentina Canuti – Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy

Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence | Department of NEUROFARBA, University of Florence | Enolife SrL, Montemesola (TA)

Contact the author

Keywords

Winemaking process, typicality, quality, sustainable productions

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

La certificazione ambientale del territorio: fattibilita’ e prospettive

In the next years the territorial environmental certification could become realistic if the following conditions will be fully satisfied:
– the enhancement of the environmental awareness among the industries, the public administration, the authorization bodies, the living people of that territory as well as the tourists and visitors.

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

The use of non-Saccharomyces yeast species for the improvement of wine technological and oenological properties is a topic that has gained much interest in recent years [1]. Their application as co-starter cultures sequential to the inoculation of Saccharomyces cerevisiae and in aging on the lees has been shown to improve aspects such as protein stability and mouthfeel [2].

The use of remote sensing in South-African terroir research

The diversity of soil types in the Western Cape of South Africa leads to high levels of within-vineyard variability. Multispectral remote sensing has received a lot of attention recently in the South-African wine industry in an attempt to identify and deal with this variability.

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.