WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Rationalizing The Wine Nucleophilic Competition For Quinone Addition

Rationalizing The Wine Nucleophilic Competition For Quinone Addition

Abstract

Protecting white wine against early oxidation is a worldwide issue, because the uncontrolled oxidation of wine promotes aromatic loss and color browning which lead to wine unacceptance by consumers. These changes are mainly driven by the consumption of oxygen by polyphenols leading to the production of quinones which are oxidant compounds. Quinones can react with numerous nucleophilic compounds notably aromatic thiols, decreasing the aromatic bouquet of the wine.

The nucleophilic addition reaction of standard compounds on 4 methyl-1,2-benzoquinone (4MeQ) can be monitored over time by mass spectrometry (MS). The addition of GSH on 4MeQ follows an apparent first order kinetic which is easy to monitor and fit with simple mathematical model. The best fit with first order kinetic (adjusted R² > 0.98) enables to estimate GSH-half-life which is related to the effective competition of other compounds present in solution. This model firstly applied on model solution with known concentrations in nucleophilic compounds (amino acids, peptpides), was then used to estimate the nucleophilic activity of inactivated yeast’s soluble fractions to classify these enological additives. The GSH-half-life ranged from 4.6 to 69.3 hours depending on the GSH accumulation process initially involved in the yeast enrichment process. Our results clearly show that the process of glutathione accumulation in yeast favors the co-accumulation of additional nucleophilic compounds, with the most interesting consequence that the GSH itself appears to be preserved. This methodology reveals that the kinetics of reference nucleophiles addition to a quinone, can rationalize the non-GSH fraction contribution to the global nucleophilic properties of complex matrices.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Florian BAHUT, Rémy, Romanet, , Nathalie Sieczkowski, Maria Nikolantonaki, Régis D. Gougeon

Presenting author

Florian BAHUT – Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France; Lallemand SAS, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France | Lallemand SAS, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France | Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France | Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France 

Contact the author

Keywords

Yeast derivatives, Quinone, Nucleophile, Glutathione, Oxidation

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

DNA-free genome editing confers disease resistance in grapevine varieties

The grapevine is facing significant challenges due to climate change, as rising temperatures impact its physiological traits and disrupt plant phenology.

New training methods to manage climatic and ecological transitions in perennial fruit crops

Context and purpose. Climate change and the demand for reducing inputs, including chemical compounds, present significant challenges for perennial fruit crops like grapes and apples.

Fully automated non-targeted GC-MS data analysis

Non-targeted analysis is applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. In contrast to targeted analysis, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition.

Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: red grapevines

Because terroir and cultivar are drivers of wine quality, is essential to investigate theirs effects on polyphenolic profile before promoting the implantation of a red minority variety in a specific area. This work, included in MINORVIN project, focuses in the polyphenolic profile of 7 red grapevines minority varieties of Vitis vinifera L. (Morate, Sanguina, Santafe, Terriza Tinta Jeromo Tortozona Tinta) and Tempranillo) from six typical viticulture Spanish areas: Aragón (A1), Cataluña (A2), Castilla la Mancha (A3), Castilla –León (A4), Madrid (A5) and Navarra (A6) of 2020 season. Polyphenolic substances were extracted from grapes. 35 compounds were identified and quantified (mg subtance/kg fresh berry) by HPLC and grouped in anthocyanins (ANT) flavanols (FLAVA), flavonols (FLAVO), hydroxycinnamic (AH), benzoic (BA) acids and stilbenes (ST). Antioxidant activity (AA, mmol TE /g fresh berry) was determined by DPPH method. The results were submitted to a two-way ANOVA to investigate the influence of variety, area and their interaction for each polyphenolic family and cluster analysis was used to construct hierarchical dendrograms, searching the natural groupings among the samples. Sanguina (A3) had the most of total polyphenols while Tempranillo (A5) those of ANT. Sanguina (A2) and (A3) reached the highest values of FLAVO, FLAVA and AA. These two last samples had also the maximum of AA. The effect cultivar and area were significant for all polyphenolic families analyzed. A high variability due to variety (>50%) was observed in FLAVA and the maximum value of variability due to growing area was detected in AA (86.41%), ANT and FLAVO (51%); the interaction variety*zone was significant only for ANT, FLAVO, EST and AA. Finally, dendrograms presented five cluster: i) Sanguina (A2); ii) Sanguina (A3); iii) Tempranillo (A5); iv) Tempranillo (A3); Terriza (A3,A5), Morate (A5,A6); v) Santafé (A1,A6); Tortozona tinta (A1,A3,A6); Tinta Jeromo (A3,A4).

Mesoclimate impact on Tannat in the Atlantic terroir of Uruguay

The study of climate is relevant as an element conditioning the typicity of a product, its quality and sustainability over the years. The grapevine development and growth and the final grape and wine composition are closely related to temperature, while climate components vary at mesoscale according to topography and/or proximity to large bodies of water. The objective of this work is to assess the mesoclimate of the Atlantic region of Uruguay and to determine the effect of topography and the ocean on temperature and consequently on Tannat grapevine behavior.