WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Rationalizing The Wine Nucleophilic Competition For Quinone Addition

Rationalizing The Wine Nucleophilic Competition For Quinone Addition

Abstract

Protecting white wine against early oxidation is a worldwide issue, because the uncontrolled oxidation of wine promotes aromatic loss and color browning which lead to wine unacceptance by consumers. These changes are mainly driven by the consumption of oxygen by polyphenols leading to the production of quinones which are oxidant compounds. Quinones can react with numerous nucleophilic compounds notably aromatic thiols, decreasing the aromatic bouquet of the wine.

The nucleophilic addition reaction of standard compounds on 4 methyl-1,2-benzoquinone (4MeQ) can be monitored over time by mass spectrometry (MS). The addition of GSH on 4MeQ follows an apparent first order kinetic which is easy to monitor and fit with simple mathematical model. The best fit with first order kinetic (adjusted R² > 0.98) enables to estimate GSH-half-life which is related to the effective competition of other compounds present in solution. This model firstly applied on model solution with known concentrations in nucleophilic compounds (amino acids, peptpides), was then used to estimate the nucleophilic activity of inactivated yeast’s soluble fractions to classify these enological additives. The GSH-half-life ranged from 4.6 to 69.3 hours depending on the GSH accumulation process initially involved in the yeast enrichment process. Our results clearly show that the process of glutathione accumulation in yeast favors the co-accumulation of additional nucleophilic compounds, with the most interesting consequence that the GSH itself appears to be preserved. This methodology reveals that the kinetics of reference nucleophiles addition to a quinone, can rationalize the non-GSH fraction contribution to the global nucleophilic properties of complex matrices.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Florian BAHUT, Rémy, Romanet, , Nathalie Sieczkowski, Maria Nikolantonaki, Régis D. Gougeon

Presenting author

Florian BAHUT – Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France; Lallemand SAS, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France | Lallemand SAS, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France | Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France | Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France 

Contact the author

Keywords

Yeast derivatives, Quinone, Nucleophile, Glutathione, Oxidation

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Phenolic composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Grape and wine phenolic compounds have been shown to be highly related to both wine quality (color, flavor, and taste) and health-promoting properties (antioxidant and cardioprotective, among others). The aim of this work was to evaluate and compare the phenolic contents of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain vintage 2022. In addition, the phenolic profiles of the Portuguese wines from three vintages (2020, 2021, 2022) was compared.

Can grapevine tolerance to bunch rot be directly induced by groundcover management?

Botrytis bunch rot occurrence is the most important limitation for the wine industry in humid environments. The effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). Previous studies of our group showed strong differences in bunch rot incidence between floor management treatments: cover crop (CC) vs weed-free strips under the trellis with herbicide (H). We observed that in some circumstances this reduction in bunch rot incidence occurred without major vine growth differences among treatments. The aim of the present study was to test the general hypothesis that other factors unrelated to grapevine vegetative expression could be more relevant to grapevine susceptibility to bunch rot.

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

Contribution of soil and atmospheric conditions to leaf water potential in grapevines

Etant lié au sol et aux conditions atmosphériques, le statut hydrique influence la physiologie de la vigne d’une part, mais joue aussi un role important en ce qui concerne la qualité du raisin et donc du vin d’autre part. Nous avons mesuré, dans la région de Stellenbosch, le statut hydrique sur des pieds de Sauvignon Blanc non irrigués, implantés sur 2 terroirs différents, l’un froid, l’autre plus chaud.

Effect of soil texture on early bud burst

Notre objectif est d’étudier de façon précise les relations entre la physiologie de la vigne et le sol, en prenant en compte l’effet millésime. Nous avons plus précisément étudier la précocité de débourrement de la vigne (stade D) en fonction de la texture du sol et plus particulièrement de la teneur en éléments grossiers.