WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Rationalizing The Wine Nucleophilic Competition For Quinone Addition

Rationalizing The Wine Nucleophilic Competition For Quinone Addition

Abstract

Protecting white wine against early oxidation is a worldwide issue, because the uncontrolled oxidation of wine promotes aromatic loss and color browning which lead to wine unacceptance by consumers. These changes are mainly driven by the consumption of oxygen by polyphenols leading to the production of quinones which are oxidant compounds. Quinones can react with numerous nucleophilic compounds notably aromatic thiols, decreasing the aromatic bouquet of the wine.

The nucleophilic addition reaction of standard compounds on 4 methyl-1,2-benzoquinone (4MeQ) can be monitored over time by mass spectrometry (MS). The addition of GSH on 4MeQ follows an apparent first order kinetic which is easy to monitor and fit with simple mathematical model. The best fit with first order kinetic (adjusted R² > 0.98) enables to estimate GSH-half-life which is related to the effective competition of other compounds present in solution. This model firstly applied on model solution with known concentrations in nucleophilic compounds (amino acids, peptpides), was then used to estimate the nucleophilic activity of inactivated yeast’s soluble fractions to classify these enological additives. The GSH-half-life ranged from 4.6 to 69.3 hours depending on the GSH accumulation process initially involved in the yeast enrichment process. Our results clearly show that the process of glutathione accumulation in yeast favors the co-accumulation of additional nucleophilic compounds, with the most interesting consequence that the GSH itself appears to be preserved. This methodology reveals that the kinetics of reference nucleophiles addition to a quinone, can rationalize the non-GSH fraction contribution to the global nucleophilic properties of complex matrices.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Florian BAHUT, Rémy, Romanet, , Nathalie Sieczkowski, Maria Nikolantonaki, Régis D. Gougeon

Presenting author

Florian BAHUT – Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France; Lallemand SAS, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France | Lallemand SAS, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France | Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France | Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France 

Contact the author

Keywords

Yeast derivatives, Quinone, Nucleophile, Glutathione, Oxidation

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Drought lessons: long-term effects of climate, soil characteristics, and deficit irrigation on yield and quality under high atmospheric demand in the Douro Region

Global warming is one of the biggest environmental, social and economic threats in several viticultural regions. In the Douro Valley, changes are expected in the coming years, namely an increase in temperature and a decrease in precipitation. These changes are likely to have consequences for the production and quality of wine.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Contribution to the sensory and volatile characterization of four traditional Galician red varieties

Galicia, a region sited in the northwest of Spain, is one of the most important wine production area, with five Appellations of Origin Controlled (AOC).

Malolactic fermentation in wine production

What influence do these bacteria have on wines? What new bacteria are being studied to carry out this fermentation? Find below articles about malolactic fermentation published in our 3 media (OENO One, IVES Technical Reviews and IVES Conference Series). OENO One...

Towards a better understanding of the root system diversity and plasticityin young grafted vines using 2D imaging and 3D modelling tools

Three-dimensional functional-structural root architecture models, which decompose the root system architecture (RSA) into elementary developmental processes such as root emission, axial growth, branching patterns and tropism have become useful tools for (i) reconstructing in silico the spatial and temporal dynamics of root systems in a soil volume, (ii) analyzing their genotypic diversity and plasticity to the environment, and (iii) overcoming the bottleneck associated with their visualization and measurement in situ. Here, we present an original work on RSA phenotyping and modelling in grapevine. First, we developed 2D image-based analysis pipelines to quantify morphological and architectural traits in young grafts. Second, we parametrized and validated the 3D root model Archisimple on two rootstock genotypes (RGM, 1103P) grafted with V. vinifera Cabernet-Sauvignon and grown in different controlled conditions (rhizotrons, pots, tubes).