WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Wines produces without SO2 addition: which impact on their colour? An approach at the global and pigments levels

Wines produces without SO2 addition: which impact on their colour? An approach at the global and pigments levels

Abstract

Since the 18th century, sulfur dioxide (SO2) is used in winemaking. Added at different steps, its antimicrobial but also antioxidasic and antioxidant properties are very helpful for winemakers. Nevertheless sulfur dioxide has a real potential health impact, particularly for sensitive consumers often highlighted by hygienists. Nowadays, a serious trend for “natural” wines (i.e. produced without any additives), as described by their producers, could be observed on the French market what match with a proliferation of wines elaborated without any sulfite addition. 

During the winemaking process, anthocyanins are extracted from the grape’s skins and their concentrations and chemical reactivity all over red wine shelf life will determine its colour. If the key role of oxygen during ageing on colour stabilization is well established for a long time and explained by the production of acetaldehyde (from ethanol) which allow to create ethylidene bridges between anthocyanins and tannins (Es-Safi, 1999. Recently a strategy has been develop to identified and quantified separately each family of polymeric pigments formed during ageing in red wine by UPLC-UV-Q-TOF (Zeng, 2015)

Wines selected for this study were, on one hand, thirty-five commercial wines from Bordeaux area (2015 and 2016 vintages, respectively 19 produced without sulfite addition and 16 with) and, on the other hand, eight experimental wines also produced with and without sulfites addition from grapes of the same plot a different maturity levels (2017 and 2018 vintage). Wines were analyzed by spectrophotometric techniques and their polymeric pigments were quantified by UPLC-UV-Q-TOF. Colour of wines produced without sulfites addition were more intense and L*a*b values indicated that they significantly had deeper purplish colour than the wine with sulphite. This colour differences indicating a more qualitative stabilisation of the red wine colour. The quantification of each polymeric pigments by UPLC-UV-Q-TOF after acidic depolymerisation shows that polymeric pigments with an ethylidene linkages between the anthocyanins moieties and the flavanol moieties were significantly more abundant in the red wine produce without sulphite. This higher concentration of these polymeric pigments could explain the observed colour differences since they are known to exhibit a purple colour.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Edouard PELONNIER-MAGIMEL, Michaël Jourdes, Pierre-Louis Teissèdre, Jean-Christophe Barbe

Presenting author

Edouard PELONNIER-MAGIMEL – Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France, | Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP | Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author

Keywords

Wine without SO2 – Wine colour – Polymeric pigments – Red wine – Ethylidene bridges

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Analyse et modélisation des transferts thermiques dans un sol de vignoble. Effets des techniques culturales

Natural factors such as the environment in which the vine is grown play an important role in the quality of the wine. If you want to produce a good wine, it is indeed essential to produce quality grapes. To do this, we must enhance and optimize the terroir effect which, for the moment, plays a role that is not very well known. It is therefore essential, for example, to have scientifically established and well quantifiable relationships in order to have the system of areas of controlled origin accepted. R. Morlat (1989) and G. Seguin (1970) have already carried out studies on the role of certain soil factors on grape quality. In particular, they showed the importance of soil temperature and water content.

Closing the carbon loop: evaluating the potential of grapevine-derived biochar as a soil conditioner in warm climate vineyards

Significant increases in anthropogenic carbon dioxide (CO2) emissions due to combustion of fossil fuels and intensive land management practices that release CO2 into the atmosphere have resulted in higher air temperatures due to the greenhouse effect.

Kinetic study of browning caused by laccase activity using different substrates

To our knowledge all the studies about laccase kinetics and its inhibition have been performed with substrates and conditions very different from those of real grape juice. Moreover, none of these researches really measure enzymatic browning, since they have not taken into account what happens after the oxidation of o-diphenols in o-diquinones and their subsequent polymerization to form melanins1. For that reason, the aim of this research was to develop a new model to measure the kinetics of browning caused by Botrytis cinerea laccase under conditions much closer to those of grape juice and using the substrates naturally present in it.

Agrivoltaic: chances preparing Riesling towards a better climate resilience

Agrivoltaics (AV), the innovative dual-use of land for agriculture and photovoltaic energy production on the same land, offers a promising solution to the challenges of expanding renewable energy without compromising valuable agricultural land.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.