WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Wines produces without SO2 addition: which impact on their colour? An approach at the global and pigments levels

Wines produces without SO2 addition: which impact on their colour? An approach at the global and pigments levels

Abstract

Since the 18th century, sulfur dioxide (SO2) is used in winemaking. Added at different steps, its antimicrobial but also antioxidasic and antioxidant properties are very helpful for winemakers. Nevertheless sulfur dioxide has a real potential health impact, particularly for sensitive consumers often highlighted by hygienists. Nowadays, a serious trend for “natural” wines (i.e. produced without any additives), as described by their producers, could be observed on the French market what match with a proliferation of wines elaborated without any sulfite addition. 

During the winemaking process, anthocyanins are extracted from the grape’s skins and their concentrations and chemical reactivity all over red wine shelf life will determine its colour. If the key role of oxygen during ageing on colour stabilization is well established for a long time and explained by the production of acetaldehyde (from ethanol) which allow to create ethylidene bridges between anthocyanins and tannins (Es-Safi, 1999. Recently a strategy has been develop to identified and quantified separately each family of polymeric pigments formed during ageing in red wine by UPLC-UV-Q-TOF (Zeng, 2015)

Wines selected for this study were, on one hand, thirty-five commercial wines from Bordeaux area (2015 and 2016 vintages, respectively 19 produced without sulfite addition and 16 with) and, on the other hand, eight experimental wines also produced with and without sulfites addition from grapes of the same plot a different maturity levels (2017 and 2018 vintage). Wines were analyzed by spectrophotometric techniques and their polymeric pigments were quantified by UPLC-UV-Q-TOF. Colour of wines produced without sulfites addition were more intense and L*a*b values indicated that they significantly had deeper purplish colour than the wine with sulphite. This colour differences indicating a more qualitative stabilisation of the red wine colour. The quantification of each polymeric pigments by UPLC-UV-Q-TOF after acidic depolymerisation shows that polymeric pigments with an ethylidene linkages between the anthocyanins moieties and the flavanol moieties were significantly more abundant in the red wine produce without sulphite. This higher concentration of these polymeric pigments could explain the observed colour differences since they are known to exhibit a purple colour.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Edouard PELONNIER-MAGIMEL, Michaël Jourdes, Pierre-Louis Teissèdre, Jean-Christophe Barbe

Presenting author

Edouard PELONNIER-MAGIMEL – Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France, | Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP | Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, Univ. Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author

Keywords

Wine without SO2 – Wine colour – Polymeric pigments – Red wine – Ethylidene bridges

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Behaviour of two training systems for mechanical pruning combined with different nitrogen fertilizations on cv. Colombard

Today winegrowers involved in mechanical winter pruning are applying this viticultural technique on two main training systems, the free cordon, appearing to be the more efficient, and the trellised vertical shoot positioning (VSP) system. The main reasons for maintaining the trellis are generally due to common habits in vineyard management, risk of wind damage for the shoots, or risk of decrease in photosynthesis potential. The aim of the study was to assess the effects of the two training systems on vine. In addition, different nitrogen fertilization levels were applied on the two systems to evaluate the best combination to achieve yield and grape quality.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Fertility assessment in Vitis vinifera L., cv. Alvarinho

The Portuguese wine production is characterized by wide yield fluctuations, causing considerable implications in the economic performance of this sector. The possibility of predicting the yield in advance is crucial as it enables preliminary planning and management of the available resources. The present work aims to study and evaluate two different techniques for the assessment of vine fertility. vineyards.

Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Precision viticulture consists in using ICT (Information and Communication Technology) to implement more specific and better targeted technical vine practices. With proxy-detection

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.