WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 What happens with the glutathione during winemaking and the storage of the wine?

What happens with the glutathione during winemaking and the storage of the wine?

Abstract

We tried to give a part of the answer to this question by monitoring glutathione during winemaking and storage. The novelty of our approach is to quantify simultaneously the three known forms of glutathione: free glutathione (GSH), oxidized form (GSSG) and glutathione-S-sulfonate (GSSO3H). This last molecule was reported first in wine by Arapatsis et al. (2016), who described the reaction between SO2 and GSSG resulting GSH and GSSO3H. Theoretically, GSH can further react with SO2, but this reaction is slow. This results obtained in model wine was now proved in grape juice, by measuring the kinetic of the reaction after the addition of SO2. For this purpose a LC-MS/MS analysis method was developed, which allows for the first time the quantification of GSSO3H beside of GSH and GSSG in the wine. 

The analyses of samples taken in the different moment of winemaking shows that in the must only GSH and GSSG are present. GSSO3H appears after the addition of SO2 at the end of the alcoholic fermentation. It appears also to be the dominant form of glutathione in SO2 containing wines after 3 months storage. The analysis of a hundred of wines showed a correlation between the relative concentration of GSSO3H and the total SO2 level of the wine. Temperature also effects the reaction rate. Grape variety does not seem to influence the formation of GSSO3H. 

We could conclude that SO2 contribute to release active GSH from the GSSG and so extend the protection potential against oxidation during the first months of storage. It remains the questions: Does GSSO3H have any antioxidant activity? Further investigation would be needed to address this question. However, in the meantime, its quantification is important in the wine to avoid underestimating the glutathione content.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Ágnes Dienes-Nagy, Frédéric Vuichard, Sandrine Belcher, Marie Blackford, Johannes Rösti, Fabrice Lorenzini

Presenting author

Ágnes Dienes-Nagy – Agroscope, 1260 Nyon, Switzerland

Agroscope, 1260 Nyon, Switzerland | Agroscope, 1260 Nyon, Switzerland | Agroscope, 1260 Nyon, Switzerland| Agroscope, 1260 Nyon, Switzerland | Agroscope, 1260 Nyon, Switzerland 

Contact the author

Keywords

glutathione, wine, glutathione-S-sulfonate, LC-MS/MS

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The ability of wine yeasts fermenting by the addition of exogenous biotin

Research is focused on the increase of the field of obtaining the wine yeast, under physical and chemical conditions. Study of different influences on yeast production is very important for the promotion

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.

Arinto clones tolerant to climate change: in depth transcriptomic study of tolerant and sensitive genotypes

Drought and heat waves deriving from climate change have been affecting grapevine plants and altering wine characteristics in the past years, and effects are expected to get worst. Innovative approaches to address this problem have been undertaken in several varieties, that consist in exploring intravarietal variability to identify genotypes that are tolerant to abiotic stress. Such is the case of the variety Arinto, where an experimental population of 165 clones installed according to a resolvable row-column design with 6 replicates, was scanned for several parameters, including surface leaf temperature (SLT). Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Optimized protocol for high-quality RNA extraction from grape tissues using sorbitol pre-wash

Obtaining high-quality RNA from grape tissues, including berry pulp, berry skins, stems, rachis, or roots, is challenging due to their composition, which includes polysaccharides, phenolic compounds, sugars, and organic acids that can negatively affect RNA extraction. For instance, polyphenols and other secondary metabolites can bind to RNA, making it difficult to extract a pure sample. Additionally, RNA can co-precipitate with polysaccharides, leading to lower extraction yield. Also, sugars and organic acids can interfere with the pH and ionic properties of the extraction buffer. To address these challenges, we optimized a protocol for RNA isolation from grape tissues.