WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 What happens with the glutathione during winemaking and the storage of the wine?

What happens with the glutathione during winemaking and the storage of the wine?

Abstract

We tried to give a part of the answer to this question by monitoring glutathione during winemaking and storage. The novelty of our approach is to quantify simultaneously the three known forms of glutathione: free glutathione (GSH), oxidized form (GSSG) and glutathione-S-sulfonate (GSSO3H). This last molecule was reported first in wine by Arapatsis et al. (2016), who described the reaction between SO2 and GSSG resulting GSH and GSSO3H. Theoretically, GSH can further react with SO2, but this reaction is slow. This results obtained in model wine was now proved in grape juice, by measuring the kinetic of the reaction after the addition of SO2. For this purpose a LC-MS/MS analysis method was developed, which allows for the first time the quantification of GSSO3H beside of GSH and GSSG in the wine. 

The analyses of samples taken in the different moment of winemaking shows that in the must only GSH and GSSG are present. GSSO3H appears after the addition of SO2 at the end of the alcoholic fermentation. It appears also to be the dominant form of glutathione in SO2 containing wines after 3 months storage. The analysis of a hundred of wines showed a correlation between the relative concentration of GSSO3H and the total SO2 level of the wine. Temperature also effects the reaction rate. Grape variety does not seem to influence the formation of GSSO3H. 

We could conclude that SO2 contribute to release active GSH from the GSSG and so extend the protection potential against oxidation during the first months of storage. It remains the questions: Does GSSO3H have any antioxidant activity? Further investigation would be needed to address this question. However, in the meantime, its quantification is important in the wine to avoid underestimating the glutathione content.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Ágnes Dienes-Nagy, Frédéric Vuichard, Sandrine Belcher, Marie Blackford, Johannes Rösti, Fabrice Lorenzini

Presenting author

Ágnes Dienes-Nagy – Agroscope, 1260 Nyon, Switzerland

Agroscope, 1260 Nyon, Switzerland | Agroscope, 1260 Nyon, Switzerland | Agroscope, 1260 Nyon, Switzerland| Agroscope, 1260 Nyon, Switzerland | Agroscope, 1260 Nyon, Switzerland 

Contact the author

Keywords

glutathione, wine, glutathione-S-sulfonate, LC-MS/MS

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation. Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

Impact of changing climatic factors on physiological and vegetative growth

Scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

Using atmospheric and statistical models to understand local climate and assess spatial temperature variability at a fine scale over the Stellenbosch wine district, South Africa

Atmospheric and statistical models were used to increase understanding of potential climatic impacts, resulting from mesoscale physical processes that cause significant temperature variability for viticulture within the Stellenbosch Wine of Origin district. Hourly temperature values from 16 automatic weather stations and 40 tinytag data loggers located in the vineyards were analysed.

Histoire des Vitis depuis leurs origines possibles sur la Pangée jusqu’aux cépages cultivés : un exemple de résilience liée à la biodiversité des espèces

The first forms of life on earth were bacteria and single-celled blue-green algae. They evolved into land plants around 500 million years ago, developing mechanisms for surviving on land, such as roots, stems and leaves. This evolution also led them to coexist with other organisms, such as insects and animals, for pollination and seed dispersal, as well as to resist environmental factors such as drought and disease.