Macrowine 2021
IVES 9 IVES Conference Series 9 Bacterial community in different wine appellations – biotic and abiotic interaction in grape berry and its impact on Botrytis cinerea development

Bacterial community in different wine appellations – biotic and abiotic interaction in grape berry and its impact on Botrytis cinerea development

Abstract

An in-depth knowledge on the conditions that trigger Botrytis disease and the microbial community associated with the susceptibility/resistance to it could led to the anticipation and response to the Botrytis emergence and severity. Therefore, the present study pretends to establish links between biotic and abiotic factors and the presence/abundance of B. cinerea. Several grape varieties from 4 different wine appellations in France and Spain have been studied at different maturity stages to analyse: 1) B. cinerea abundance (established by qPCR), 2) grape composition parameters (comprising water activity measuring, exudates composition, phenologic stage, gluconic acid, calcium, etc), and 3) grape berries microbial community diversity and composition (using 16S rRNA and ITS amplicon sequencing).Preliminary analysis of the results obtained through 16S rRNA Next Generation Sequencing revealed differences in microbial richness and bacterial composition between the vineyards. Both alpha and beta diversities correlated with fruit maturity, where grapes at harvest stage showed significantly higher richness and a dissimilar bacterial composition. In addition, bacterial community structure differed between wine appellations. The study will increase significantly our understanding of the ecology of microbial associated to different grape varieties and viticulture areas. Additionally, it will generate knowledge about the factors.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Guilherme Martins 1,2, Pauline Mazeau 1, Audrey Barsacq 1, Laurence Geny 1, Isabelle Masneuf-Pomarède 1,2 , Miren Andone Recalde 3, Iratxe Zarraonaindia 3

1 Université de Bordeaux, Isvv, Unité de Recherche Oenologie Ea 4577, Usc 1366 Inrae, Bordeaux Inp, 33140 Villenave D’Ornon, France.
2 Bordeaux Sciences Agro, 33170 Gradignan Cedex, France.
3 Department of Genetics, Physical, Anthropology & Animal Physiology, Faculty of Science And Technology, University of The Basque Country (Upv/Ehu), Leioa, Spain.
4 Ikerbasque, Basque Foundation For Science, Bilbao, Spain.

Contact the author

Keywords

microbial community, botrytis cinerea,  grape composition parameters, next generation sequencing

Citation

Related articles…

Characterization of vine vigor by ground based NDVI measurements

Many farming operations aim at controlling the leaf area of the vine according to its load. There are several techniques, direct and indirect, of estimate of this leaf area in a specific way, but impossible to implement at great scales. These last years, research in airborne and satellite remote sensing made it possible to show that a multispectral index of vegetation, computed from measurements of reflectances (red and near infrared), the « Normalised Difference Vegetation Index » (NDVI), is well correlated to the « Leaf Area Index » (leaf area per unit of ground) of the vine. Nevertheless these methods of acquisition and processing data are rather constraining and complex.

Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Context and purpose of the study – Vine development, and hence management, depends on dynamic factors (climate, soil moisture, cultural practices etc.) whose impact can vary depending upon their temporal modalities.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Climate modeling at local scale in the Waipara winegrowing region in the climate change context

In viticulture, a warming climate can have a very significant impact on grapevine development and therefore on the quality and characteristics of wines across different spatial scales, ranging from global to local. In order to adapt wine-growing to climate change, global climate models can be used to define future scenarios, but only at the scale of major wine regions. Despite the huge progress made over the last ten years in terms of the spatial resolution of climate models (now downscaled to a few square kilometres), they are not yet sufficiently precise to account for the local climate variability associated with such parameters as local topography, in spite of these parameters being decisive for vine and wine characteristics. This study describes a method to downscale future climate scenarios to vineyard scale. Networks of data loggers have been used to collect air temperature at canopy level in the Waipara winegrowing region (New Zealand) over five growing seasons. These measurements allow the creation of fine-scale geostatistical models and maps of temperature (at 100 m resolution) for the growing season. In order to model climate change at pilot site scale, these geostatistical models have been combined with regional climate change predictions for the periods 2031-2050 and 2081-2100 based on the RCP8.5 climate change scenario. The integration of local climate variability with regionalized climate change simulations allows assessment of the impacts of climate change at the vineyard scale. The improved knowledge gained using this methodology results from the increased horizontal resolution that better addresses the concerns of winegrowers. The results provide the local winegrowers with information necessary to understand current processes, as well as historical and future viticulture trends at the scale of their site, thereby facilitating decisions about future response strategies.

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].