IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Isolated Antarctic soil yeasts with fermentative capacity with potential use in the wine industry

Isolated Antarctic soil yeasts with fermentative capacity with potential use in the wine industry

Abstract

The wine industry is currently on the search for new aromas and less browning in their products. In the improvement process of wine, lower fermentation temperatures have been considered, however, the yeasts in the market cannot tolerate such temperatures. Therefore, an interesting place to find new yeasts with criotolerance is the Antarctic Continent.Our methodology to accomplish our objectives started with the isolation of yeast from soil using YM agar (yeast extract, malt extract, peptone, 1% glucose, and agar) with antibiotics. Then the isolates were submitted to a fermentation assay using a colorimetric indicator of pH variation. The samples positive for fermentative activity were then analyzed to determine tolerance to glucose:fructose 1:1, with the following concentration; 5,10,15,20, and 25%. The isolates were analyzed by their capacity to grow at different alcohol concentrations (3,6,9%).Then fingerprinting analysis was performed to select unique yeasts. Then ITS region was amplified and sequenced to identify the isolates.We were able to isolate 125 yeasts. Of which 25 had fermentative activity at 10ºC. These yeasts were used to analyze glucose tolerance and alcohol tolerance. All samples grew at 20% sugar content, and all samples grew at 6% alcohol content. Some of the isolates were capable of growing at the most extreme conditions, with 25% sugar content and 9% ethanol.After a fingerprinting assay, we reduced the candidates to 9 isolates. Then we determined the optimal growth temperature where we observed that our isolates have a longer latency period regarding S. cerevisiae, the Antarctic isolates grew better at 10 and 15ºC. Later on, we extracted DNA, performed a PCR for the ITS region, and sequenced the ITS regions to identify the isolates from Antarctica. Finally, the ITS sequenced regions were used to create a phylogenetic tree.The fermentative yeasts with high alcohol tolerance and fermentation at high concentrations of sugar will be used for micro-fermentation of synthetic must to determine their potential use in the production of Chilean wine

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Navarro Laura1, Gil Mariona2, Gutiérrez Ana1,3, Calisto Nancy1,4, Úbeda Cristina1,5 and Corsini Gino1

1Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma, Santiago, Chile
2Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma, Santiago, Chile
3Facultad de Ciencias Agropecuarias y Forestales, Departamento de Producción Agropecuaria Universidad de La Frontera, Temuco. Chile
4Centro de Investigación y Monitoreo Ambiental Antártico (CIMAA), Departamento de Ingeniería Química, Universidad de Magallanes, Avenida Bulnes 01855, Punta Arenas, Chile
5​​Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, España.

Contact the author

Keywords

wine, wild yeast, fermentation at cold temperatures, browning

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Wine shaking during transportation: influence on the analytical and sensory parameters of wine

According to OIV reports, annual world wine consumption fluctuated around 240-245 mln hL over the past decade. The general market globalization has led to the situation when almost half of the consumed wine is exported to other countries. Of this volume, more than 60 mln hL are bottled still and sparkling wines.

Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Climate is a key variable for grapevine development and berry ripening processes. At mesoscale level, climate spatial variations are often determined empirically, as weather station networks are generally not dense enough to account for local climate variations.

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

The performance of grapevines on identified terroirs in Stellenbosch, South Africa

A terroir can be defined as a natural unit that is characterised by a specific agricultural potential, which is imparted by natural environmental features, and is reflected in the characteristics of the final product.