IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Isolated Antarctic soil yeasts with fermentative capacity with potential use in the wine industry

Isolated Antarctic soil yeasts with fermentative capacity with potential use in the wine industry

Abstract

The wine industry is currently on the search for new aromas and less browning in their products. In the improvement process of wine, lower fermentation temperatures have been considered, however, the yeasts in the market cannot tolerate such temperatures. Therefore, an interesting place to find new yeasts with criotolerance is the Antarctic Continent.Our methodology to accomplish our objectives started with the isolation of yeast from soil using YM agar (yeast extract, malt extract, peptone, 1% glucose, and agar) with antibiotics. Then the isolates were submitted to a fermentation assay using a colorimetric indicator of pH variation. The samples positive for fermentative activity were then analyzed to determine tolerance to glucose:fructose 1:1, with the following concentration; 5,10,15,20, and 25%. The isolates were analyzed by their capacity to grow at different alcohol concentrations (3,6,9%).Then fingerprinting analysis was performed to select unique yeasts. Then ITS region was amplified and sequenced to identify the isolates.We were able to isolate 125 yeasts. Of which 25 had fermentative activity at 10ºC. These yeasts were used to analyze glucose tolerance and alcohol tolerance. All samples grew at 20% sugar content, and all samples grew at 6% alcohol content. Some of the isolates were capable of growing at the most extreme conditions, with 25% sugar content and 9% ethanol.After a fingerprinting assay, we reduced the candidates to 9 isolates. Then we determined the optimal growth temperature where we observed that our isolates have a longer latency period regarding S. cerevisiae, the Antarctic isolates grew better at 10 and 15ºC. Later on, we extracted DNA, performed a PCR for the ITS region, and sequenced the ITS regions to identify the isolates from Antarctica. Finally, the ITS sequenced regions were used to create a phylogenetic tree.The fermentative yeasts with high alcohol tolerance and fermentation at high concentrations of sugar will be used for micro-fermentation of synthetic must to determine their potential use in the production of Chilean wine

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Navarro Laura1, Gil Mariona2, Gutiérrez Ana1,3, Calisto Nancy1,4, Úbeda Cristina1,5 and Corsini Gino1

1Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma, Santiago, Chile
2Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma, Santiago, Chile
3Facultad de Ciencias Agropecuarias y Forestales, Departamento de Producción Agropecuaria Universidad de La Frontera, Temuco. Chile
4Centro de Investigación y Monitoreo Ambiental Antártico (CIMAA), Departamento de Ingeniería Química, Universidad de Magallanes, Avenida Bulnes 01855, Punta Arenas, Chile
5​​Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, España.

Contact the author

Keywords

wine, wild yeast, fermentation at cold temperatures, browning

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

Matériel végétal et valorisation des terroirs viticoles

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Timing of leaf removal effects on vitis vinifera L. Cv. Grenache differed on two contrasting seasons

Warming trends over the winegrowing regions lead to an advance of grapevine phenology, diminution of yield and increased sugar content and must pH with a lower polyphenol content, especially anthocyanins. Canopy management practices are applied to control the source sink balance and improve the cluster microclimate to enhance berry composition. We hyphothesized that an early leaf removal might promote a delayed ripening through severe defoliation after fruitset; whereas, a late leaf removal at mid-ripening would reduce sugar accumulation.

Arinto clones tolerant to climate change: in depth transcriptomic study of tolerant and sensitive genotypes

Drought and heat waves deriving from climate change have been affecting grapevine plants and altering wine characteristics in the past years, and effects are expected to get worst. Innovative approaches to address this problem have been undertaken in several varieties, that consist in exploring intravarietal variability to identify genotypes that are tolerant to abiotic stress. Such is the case of the variety Arinto, where an experimental population of 165 clones installed according to a resolvable row-column design with 6 replicates, was scanned for several parameters, including surface leaf temperature (SLT). Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability.

Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

The accession Criolla Chica Nº2 (CCN2) is catalogued as a floral mutation of cultivar Criolla Chica (synonym for cv. Listán Prieto). Contrary to what is observed in hermaphrodite-cultivated varieties like Criolla Chica, CCN2 exhibits a prevalence of masculinized flowers. Aiming to study the incidence and phenotypical implications of this mutation, CCN2 plants were deeply studied using Criolla Chica ‘Ballista’ (CCBA) as control plants. For each CCN2 plant, two inflorescences per shoot were sampled and segmented into proximal, mid and distal positions, relative to the pedicel. Flowers were observed through magnifying lens and classified according to OIV151 descriptor.