IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of grape-ripening process variability using mid infrared spectroscopy

Study of grape-ripening process variability using mid infrared spectroscopy

Abstract

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist. During this process, the grapes suffer different physiological and chemical changes that include berry softening, sugar accumulation and metabolism of different chemical compounds such as organic acids, polyphenols or aromatic compounds. As these changes occur within each berry, the same bunch may contain berries at different stages of maturity, making it difficult to determine a single optimal state. In addition, when the position of the bunch on the vine and the position of the vine within the vineyard are also considered, the difficulty to correctly determine the optimum ripening point becomes even greater. To solve this problem, a representative sampling of the vineyard is usually made and the average values of sugar contents, acidity (pH or titratable acidity) and phenolic compounds (mainly in red varieties) are determined towards the designation of harvest time.

The classical analytical methods used to determine these parameters are destructive, time consuming and cannot be applied on-site. Recent developments in equipment, such as infrared spectroscopy, hyperspectral imaging or specific sensors (i.e. DA-meter) allow obtaining real-time information about the maturity of the grapes. In this work, a strategy
consisting on coupling FTIR-ATR spectroscopy and chemometric tools is proposed for an effective ripening control, which implies knowing the real state of maturation of the berries and not a single average value. This information will make it possible to carry out the suitable viticultural practices to improve the quality of the grapes.

ANOVA-simultaneous component analysis (ASCA) was applied to factorize the ripening variability sources, such as the bunch-height in the plant or the grape-position in the bunch. The variability sources affecting the MIR spectra and the sugar content and pH were studied, showing an evolution over time and depending on the position of the berries. Moreover, prediction of sugar content and pH was achieved by measuring the grapes in the vineyard, showing the capability of the FTIR portable device to monitor the ripening process.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Schorn-Garcia Daniel¹, Giussani Barbara², Busto Olga¹, Aceña Laura¹, Boqué Ricard¹ and Mestres Montserrat¹

¹Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Instrumental Sensometry (iSens)
²Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria

Contact the author

Keywords

grape-ripening process, FTIR, portable device, ASCA

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

From the “climats de Bourgogne” to the terroir in bottles

From a chemical composition point of view, wine is the result of complex interplays between environmental, genetic and human factors. The notion of terroir in viticulture involves the vine and its environment, including phenology, geography, geology, pedology and local climate of a vineyard, along with human inputs.

Using NIR/SWIR hyperspectral camera mounted on a UAV to assess grapevine water status in a variably irrigated vineyard

Vineyards face climate change, increasing temperatures, and drought affecting vine water status. Water deficit affects plant physiology and can ultimately decrease yield and grape quality when it is not well managed. Monitoring vine water status and irrigation can help growers better manage their vineyards.

CropManage online decision support tool for irrigation scheduling of vineyards

CropManage (CM) is an online decision support service (DSS) developed by the University of California, Division of Agriculture and Natural Resources for assisting farmers with efficiently managing water and nitrogen fertilizer to match the site-specific needs of their crops.

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years.

Un Système d’Informations à Références Spatiales sur le Vignoble. Un outil performant d’aide aux recherches sur la caractérisation des terroirs viticoles

The “Terroirs d’Anjou” project led by the Agronomy sector of the Vine and Wine Research Unit of the INRA center in Angers aims to characterize the viticultural terroirs in a study area which includes 29 municipalities in the Maine et Loire and cuts across the Anjou, Coteaux du layon and Coteaux de l’Aubance appellation areas.