IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of grape-ripening process variability using mid infrared spectroscopy

Study of grape-ripening process variability using mid infrared spectroscopy

Abstract

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist. During this process, the grapes suffer different physiological and chemical changes that include berry softening, sugar accumulation and metabolism of different chemical compounds such as organic acids, polyphenols or aromatic compounds. As these changes occur within each berry, the same bunch may contain berries at different stages of maturity, making it difficult to determine a single optimal state. In addition, when the position of the bunch on the vine and the position of the vine within the vineyard are also considered, the difficulty to correctly determine the optimum ripening point becomes even greater. To solve this problem, a representative sampling of the vineyard is usually made and the average values of sugar contents, acidity (pH or titratable acidity) and phenolic compounds (mainly in red varieties) are determined towards the designation of harvest time.

The classical analytical methods used to determine these parameters are destructive, time consuming and cannot be applied on-site. Recent developments in equipment, such as infrared spectroscopy, hyperspectral imaging or specific sensors (i.e. DA-meter) allow obtaining real-time information about the maturity of the grapes. In this work, a strategy
consisting on coupling FTIR-ATR spectroscopy and chemometric tools is proposed for an effective ripening control, which implies knowing the real state of maturation of the berries and not a single average value. This information will make it possible to carry out the suitable viticultural practices to improve the quality of the grapes.

ANOVA-simultaneous component analysis (ASCA) was applied to factorize the ripening variability sources, such as the bunch-height in the plant or the grape-position in the bunch. The variability sources affecting the MIR spectra and the sugar content and pH were studied, showing an evolution over time and depending on the position of the berries. Moreover, prediction of sugar content and pH was achieved by measuring the grapes in the vineyard, showing the capability of the FTIR portable device to monitor the ripening process.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Schorn-Garcia Daniel¹, Giussani Barbara², Busto Olga¹, Aceña Laura¹, Boqué Ricard¹ and Mestres Montserrat¹

¹Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Instrumental Sensometry (iSens)
²Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria

Contact the author

Keywords

grape-ripening process, FTIR, portable device, ASCA

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

First company results and for the territory on the application of the “bio-Métaéthique 4.1c” in italy. Cultural, socio-economic, technical and productive aspects

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

Zonificación climática de las D.O. Rueda y Toro y vinos de la tierra de medina del campo

La producción vitícola es el resultado de una serie de factores influyentes (variedad, patron) dentro de un medio ecológico­-climatico-edafico, en el que se interactua por medio de técnicas de cultivo adecuadas.

SSR analysis of some Vitis sylvestris (GMEL.) accessions of the Szigetköz and Fertő-hanság national park, Hungary

The evolution of cultivated plants played important role in the ascent of humanity. Research of their origin and evolution started at the beginning of the20th century, but till nowadays a lot of questions remain open. A large number of theories exist about the evolution of the European grapevine (Vitis vinifera L.). The Vitis sylvestris GMEL. in Hungary is a protected species.

Fertility assessment in Vitis vinifera L., cv. Alvarinho

The Portuguese wine production is characterized by wide yield fluctuations, causing considerable implications in the economic performance of this sector. The possibility of predicting the yield in advance is crucial as it enables preliminary planning and management of the available resources. The present work aims to study and evaluate two different techniques for the assessment of vine fertility. vineyards.