IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of grape-ripening process variability using mid infrared spectroscopy

Study of grape-ripening process variability using mid infrared spectroscopy

Abstract

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist. During this process, the grapes suffer different physiological and chemical changes that include berry softening, sugar accumulation and metabolism of different chemical compounds such as organic acids, polyphenols or aromatic compounds. As these changes occur within each berry, the same bunch may contain berries at different stages of maturity, making it difficult to determine a single optimal state. In addition, when the position of the bunch on the vine and the position of the vine within the vineyard are also considered, the difficulty to correctly determine the optimum ripening point becomes even greater. To solve this problem, a representative sampling of the vineyard is usually made and the average values of sugar contents, acidity (pH or titratable acidity) and phenolic compounds (mainly in red varieties) are determined towards the designation of harvest time.

The classical analytical methods used to determine these parameters are destructive, time consuming and cannot be applied on-site. Recent developments in equipment, such as infrared spectroscopy, hyperspectral imaging or specific sensors (i.e. DA-meter) allow obtaining real-time information about the maturity of the grapes. In this work, a strategy
consisting on coupling FTIR-ATR spectroscopy and chemometric tools is proposed for an effective ripening control, which implies knowing the real state of maturation of the berries and not a single average value. This information will make it possible to carry out the suitable viticultural practices to improve the quality of the grapes.

ANOVA-simultaneous component analysis (ASCA) was applied to factorize the ripening variability sources, such as the bunch-height in the plant or the grape-position in the bunch. The variability sources affecting the MIR spectra and the sugar content and pH were studied, showing an evolution over time and depending on the position of the berries. Moreover, prediction of sugar content and pH was achieved by measuring the grapes in the vineyard, showing the capability of the FTIR portable device to monitor the ripening process.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Schorn-Garcia Daniel¹, Giussani Barbara², Busto Olga¹, Aceña Laura¹, Boqué Ricard¹ and Mestres Montserrat¹

¹Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Instrumental Sensometry (iSens)
²Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria

Contact the author

Keywords

grape-ripening process, FTIR, portable device, ASCA

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Actual challenges and the need to produce alternative products from red grapes rich in phenols and antioxidants

The global consumption of wine has undergone significant changes after several years of covid-19, which was the beginning of a global crisis of the current century. This pushed some people to start looking for comfort and security as they felt that the world around them was losing these benefits. In most cases, this has led to them to idea of rethinking their lives in an attempt to live better or continuing to stay true to their habits and lifestyles despite the pressure of changes. Alcohol in any form is a part of these reactions, leading to increased consumption in the early stages of a crisis, particularly in relation to anxiety.

Health benefits of wine industry by-products

The total global production of wine in 2021 was estimated at around 250 million hectoliters. The 30% of the total quantity of vinified grapes corresponds to wine by-products that represent nearly 20 million tons, of which 50% corresponds to the European Union. Wine by-products have been used for different purposes, in agriculture, cosmetics, pharmacy, biorefinery, feed, and the food

Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Hydroxytyrosol (HT) is a bioactive phenolic compound with antioxidant activity. Yeast synthetise tyrosol from tyrosine by the Ehrlich pathway which is subsequently hydroxylated to HT. The aim of the present work is to develop and validate an UHPLC–HRMS method to assess the metabolites involved in this pathway as well as to screen Spanish commercial wines for HT bioactive compound.

Sustainability in the winery sector: A European study

This paper investigates sustainability in European wineries. The growing body of literature on the subject of sustainability underlines the increasing attention on the environmental and social impacts of intensive and irresponsible wine production.

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.