IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of grape-ripening process variability using mid infrared spectroscopy

Study of grape-ripening process variability using mid infrared spectroscopy

Abstract

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist. During this process, the grapes suffer different physiological and chemical changes that include berry softening, sugar accumulation and metabolism of different chemical compounds such as organic acids, polyphenols or aromatic compounds. As these changes occur within each berry, the same bunch may contain berries at different stages of maturity, making it difficult to determine a single optimal state. In addition, when the position of the bunch on the vine and the position of the vine within the vineyard are also considered, the difficulty to correctly determine the optimum ripening point becomes even greater. To solve this problem, a representative sampling of the vineyard is usually made and the average values of sugar contents, acidity (pH or titratable acidity) and phenolic compounds (mainly in red varieties) are determined towards the designation of harvest time.

The classical analytical methods used to determine these parameters are destructive, time consuming and cannot be applied on-site. Recent developments in equipment, such as infrared spectroscopy, hyperspectral imaging or specific sensors (i.e. DA-meter) allow obtaining real-time information about the maturity of the grapes. In this work, a strategy
consisting on coupling FTIR-ATR spectroscopy and chemometric tools is proposed for an effective ripening control, which implies knowing the real state of maturation of the berries and not a single average value. This information will make it possible to carry out the suitable viticultural practices to improve the quality of the grapes.

ANOVA-simultaneous component analysis (ASCA) was applied to factorize the ripening variability sources, such as the bunch-height in the plant or the grape-position in the bunch. The variability sources affecting the MIR spectra and the sugar content and pH were studied, showing an evolution over time and depending on the position of the berries. Moreover, prediction of sugar content and pH was achieved by measuring the grapes in the vineyard, showing the capability of the FTIR portable device to monitor the ripening process.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Schorn-Garcia Daniel¹, Giussani Barbara², Busto Olga¹, Aceña Laura¹, Boqué Ricard¹ and Mestres Montserrat¹

¹Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Instrumental Sensometry (iSens)
²Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria

Contact the author

Keywords

grape-ripening process, FTIR, portable device, ASCA

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The international Internet site of the geoviticulture MCC system

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world.

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Validation of the viticulture zoning methodology applied to determine the homogenous soil units present on D.O. Ribera de Duero region

The methodology to viticulture zoning developed and proposed by Gómez-Miguel and Sotés (1992) has been studied in order to validate it. This was the main aim of this work

Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

According to the Protected Designation of Origin (PDO), Cava is protected in the quality sparkling wines made by the traditional Champenoise method were the wine realize a second fermentation inside the own bottle1. Geographical and human peculiarities of each bottle are the main way for the final quality2. The aim of this study is to find correlations and which target compounds are the most representative of the quality of two different grape varieties, Pinot Noir and Xarel·lo. The quality of these two types of grapes is being studied for each variety by a previous classification of the vineyard made by the company who provided the samples (qualities A,B,C,D, being A the better one and D the worst one). The target compounds studied are organic acids and polyphenols. The methodology for the determination of organic acids is HPLC-UV/vis and for some of them the enzymatic methodology.