terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Abstract

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character. This study aimed to explore the metabolite profiles and chemical transformations associated with noble rot in grape berries from the Betsek area in the Tokaj region. Botrytized grape samples were collected monthly from August to November, covering six phases of botritization. Immediate freezing in liquid nitrogen was performed on-field to preserve sample integrity. Metabolomic analysis was conducted by cryomilling the samples, followed by extraction with methanol and ethyl acetate. The extracts were analyzed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, utilizing both positive and negative electrospray ionization. The resulting metabolomic data was processed and statistically analyzed. A principal component analysis (PCA) was performed on the untargeted metabolomic profiles obtained from the botrytized grape samples, which revealed distinct differences between each phase of botritization. The main source of variance observed in the PCA plot was attributed to the botrytization process itself. This finding suggests that the metabolic changes occurring during the different stages of botritization significantly contribute to the overall metabolite composition of the grape berries. Results provided a valuable overview of the dynamic nature of the metabolic transformations associated with noble rot, highlighting the temporal evolution of the metabolite profiles throughout the botrytization process. Further analysis will enable the identification of specific metabolites that contribute to the unique chemical characteristics of noble rot-affected grape berries.

Acknowledgements: This research was funded by the National Research, Development and Innovation Office under the project titled “Research and development to improve sustainability and climate resilience of viticulture and oenology at the Eszterházy Károly Catholic University” with the grant number TKP2021-NKTA-16.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Miklós Lovas1*, Marietta Korózs1, Anna Molnár1, Ádám Hegyi1, Kriszta Szabadi1, Thomas Cels1, Kálmán Zoltán Váczy1

1Research and Development Centre, Eszterházy Károly Catholic University, Eger, Hungary

Contact the author*

Keywords

noble rot, botrytis, metabolomics, grape, LCMS

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.