IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Sensory impact of sunburn in white wine and mitigation of climateinduced off-flavours by defoliation and application of reflecting particles on grapes

Sensory impact of sunburn in white wine and mitigation of climateinduced off-flavours by defoliation and application of reflecting particles on grapes

Abstract

Climate change is a great environmental challenge with large impact on the Wine and sprakling wine industry. Heat waves and dryness cause frequent sunburn damage in white grapes. This leads not only to severe yield loss but also to sensory changes of white wine leading to climate-induced off-flavours. This study aims to develop viticultural and oenological strategies to minimize the sunburn damage to identify the molecular substance, which triggers the Off-Flavours and to prevent them. In 2020 defoliation measures, the application of kaolin and calcium carbonate suspensions on the grapes and a combination of both measures were investigated in respect to mitigate sunburn damage in Riesling vineyards in Germany. Defoliation was done at the early flowering state and late véraison. Early defoliation leads to longer sun exposition of the grapes, triggering molecular protection mechanisms against sunburn. Application of reflecting particles shall protect the grapes from solar radiation during heat periods.
Seven treatments were replicated in three field trials. Grapes of each field trial were separately vinified using the same protocol. The resulting wines were analysed by descriptive analysis and temporal dominance of sensations (TDS) with a trained panel. Additionally, we analysed the aroma composition of the wines using an established SIDA HS-SPME-GC-MS method.
The early sun exposition treatment with partial defoliation of 75 % of the grape zone during flowering and second defoliation of 75 % at véraison creates wines with less fruity aroma, but with a smoky taint (4-vinylguajacol) and the atypical aging note (ATA), reminiscent of acacia blossom and fusel alcohols. Application of kaolin or calcium carbonate slightly mitigated these unpleasant effects and even increased fruity aroma (fruity esters) and a more sweet taste impression. The late defoliation treatment (100 % at véraison) reduced both the green notes of the control and the smoky and ATA nuances, occurring with an early partial defoliation. However, these wines exhibited slight petrol off-flavour, which was corrobated by increased levels of TDN (1,1,6-Trimethyl-1,2-dihydronaphthalene) and vitispirane. Vice versa, early defoliation enhanced formation of floral compounds such as linalool, 2-phenylethanol and ß-damascenon. Wines varied substantially in the sour taste, which was not linked to pH. The TDS results additionally revealed for early defoliated treatments and those receiving kaolin and calcium carbonate protection a stronger fruity and sweet dominance in the first 10 seconds, while late defoliated treatments resulted in a more dominating and lasting sourness.
In conclusion, early defoliation with protecting particles not only favours acclimatisation of grapes to sun exposure leading to less sunburn, but also produces more fruity and less smoky, petrol flavoured wines

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Szmania Caterina¹, Waber Jonas¹and Fischer Ulrich¹

¹Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology

Contact the author

Keywords

climate change, sunburn damage, kaolin, off-flavour, descriptive analysis, grapes, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.

Projected changes of grapevine phenology in Belgian and South African vineyards under climate change scenarios

The concept of ‘terroir’ describes the interplay of the environmental factors that affect the grapevine. This includes but is not limited to climate, soil composition, vineyard management, topography, and geology.

Smart microgrid: how to reduce costs and CO2 emissions in wineries and vineyards

The wine sector is greatly threatened by climate change, but is also one of its contributors.

Unravelling regional typicality of Australian premium Shiraz through an untargeted metabolomics approach

Aims: The current study seeks to demonstrate that premium Shiraz wines from different Australian geographic indications (GI) can be distinguished by their volatile compound composition. 

Tropical fruit aroma in white wines: the role of fermentation esters and volatile thiols

Volatile thiols are impact aroma compounds, well-known in the literature for imparting tropical fruit aromas such as passion fruit, guava, grapefruit, and citrus in white wines [1]. More recent evidence suggests that tropical fruit aromas are also caused by other aroma compounds besides thiols, such as fermentation esters, or the interaction between these volatile families. Therefore, the objective of this study was to investigate the effects of combining esters and/or thiols to determine their impact on the fruitiness aroma perception of white wines. Pinot gris wine was produced at the OSU research winery and was dearomatized using Lichrolut® EN. Combinations of fermentation volatile compounds were added to the wine, forming the aroma base. Treatment wines were composed of additions of different concentrations and combinations of thiols and/or esters. Samples were subjected to sensory analysis where forty-six white wine consumers evaluated the orthonasal aroma of the wines and participated in Check-All-That-Apply (CATA).