IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Sensory impact of sunburn in white wine and mitigation of climateinduced off-flavours by defoliation and application of reflecting particles on grapes

Sensory impact of sunburn in white wine and mitigation of climateinduced off-flavours by defoliation and application of reflecting particles on grapes

Abstract

Climate change is a great environmental challenge with large impact on the Wine and sprakling wine industry. Heat waves and dryness cause frequent sunburn damage in white grapes. This leads not only to severe yield loss but also to sensory changes of white wine leading to climate-induced off-flavours. This study aims to develop viticultural and oenological strategies to minimize the sunburn damage to identify the molecular substance, which triggers the Off-Flavours and to prevent them. In 2020 defoliation measures, the application of kaolin and calcium carbonate suspensions on the grapes and a combination of both measures were investigated in respect to mitigate sunburn damage in Riesling vineyards in Germany. Defoliation was done at the early flowering state and late véraison. Early defoliation leads to longer sun exposition of the grapes, triggering molecular protection mechanisms against sunburn. Application of reflecting particles shall protect the grapes from solar radiation during heat periods.
Seven treatments were replicated in three field trials. Grapes of each field trial were separately vinified using the same protocol. The resulting wines were analysed by descriptive analysis and temporal dominance of sensations (TDS) with a trained panel. Additionally, we analysed the aroma composition of the wines using an established SIDA HS-SPME-GC-MS method.
The early sun exposition treatment with partial defoliation of 75 % of the grape zone during flowering and second defoliation of 75 % at véraison creates wines with less fruity aroma, but with a smoky taint (4-vinylguajacol) and the atypical aging note (ATA), reminiscent of acacia blossom and fusel alcohols. Application of kaolin or calcium carbonate slightly mitigated these unpleasant effects and even increased fruity aroma (fruity esters) and a more sweet taste impression. The late defoliation treatment (100 % at véraison) reduced both the green notes of the control and the smoky and ATA nuances, occurring with an early partial defoliation. However, these wines exhibited slight petrol off-flavour, which was corrobated by increased levels of TDN (1,1,6-Trimethyl-1,2-dihydronaphthalene) and vitispirane. Vice versa, early defoliation enhanced formation of floral compounds such as linalool, 2-phenylethanol and ß-damascenon. Wines varied substantially in the sour taste, which was not linked to pH. The TDS results additionally revealed for early defoliated treatments and those receiving kaolin and calcium carbonate protection a stronger fruity and sweet dominance in the first 10 seconds, while late defoliated treatments resulted in a more dominating and lasting sourness.
In conclusion, early defoliation with protecting particles not only favours acclimatisation of grapes to sun exposure leading to less sunburn, but also produces more fruity and less smoky, petrol flavoured wines

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Szmania Caterina¹, Waber Jonas¹and Fischer Ulrich¹

¹Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology

Contact the author

Keywords

climate change, sunburn damage, kaolin, off-flavour, descriptive analysis, grapes, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.

Italy sweet revolution: how club grapes are transforming the table grape market

Italy is the leader table grape producer country in Europe and the eighth worldwide (OIV, 2021). The italian production area is sized at approximately 47,248 hectares with a production of 9.66 million quintals of grapes. Apulia and sicily are the main producing italian regions which collectively account for over the 90% of the italian production area (istat, 2022).

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Non-alcoholic wines: evaluation of chemical profile and biological properties

The market of non-alcoholic wine has notably increased in recent years, driven by growing health awareness and regulatory trends aimed at reducing alcohol consumption.

Mapping intra-plot topsoil diversity of Burgundy vineyards (Aloxe-Corton, France) from very high spatial resolution (VHSR) images

In this work, we present a method based on very high spatial resolution (VHSR) aerial images acquired in the visible domain and that map soil surface diversity at the hillslope