IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Sensory impact of sunburn in white wine and mitigation of climateinduced off-flavours by defoliation and application of reflecting particles on grapes

Sensory impact of sunburn in white wine and mitigation of climateinduced off-flavours by defoliation and application of reflecting particles on grapes

Abstract

Climate change is a great environmental challenge with large impact on the Wine and sprakling wine industry. Heat waves and dryness cause frequent sunburn damage in white grapes. This leads not only to severe yield loss but also to sensory changes of white wine leading to climate-induced off-flavours. This study aims to develop viticultural and oenological strategies to minimize the sunburn damage to identify the molecular substance, which triggers the Off-Flavours and to prevent them. In 2020 defoliation measures, the application of kaolin and calcium carbonate suspensions on the grapes and a combination of both measures were investigated in respect to mitigate sunburn damage in Riesling vineyards in Germany. Defoliation was done at the early flowering state and late véraison. Early defoliation leads to longer sun exposition of the grapes, triggering molecular protection mechanisms against sunburn. Application of reflecting particles shall protect the grapes from solar radiation during heat periods.
Seven treatments were replicated in three field trials. Grapes of each field trial were separately vinified using the same protocol. The resulting wines were analysed by descriptive analysis and temporal dominance of sensations (TDS) with a trained panel. Additionally, we analysed the aroma composition of the wines using an established SIDA HS-SPME-GC-MS method.
The early sun exposition treatment with partial defoliation of 75 % of the grape zone during flowering and second defoliation of 75 % at véraison creates wines with less fruity aroma, but with a smoky taint (4-vinylguajacol) and the atypical aging note (ATA), reminiscent of acacia blossom and fusel alcohols. Application of kaolin or calcium carbonate slightly mitigated these unpleasant effects and even increased fruity aroma (fruity esters) and a more sweet taste impression. The late defoliation treatment (100 % at véraison) reduced both the green notes of the control and the smoky and ATA nuances, occurring with an early partial defoliation. However, these wines exhibited slight petrol off-flavour, which was corrobated by increased levels of TDN (1,1,6-Trimethyl-1,2-dihydronaphthalene) and vitispirane. Vice versa, early defoliation enhanced formation of floral compounds such as linalool, 2-phenylethanol and ß-damascenon. Wines varied substantially in the sour taste, which was not linked to pH. The TDS results additionally revealed for early defoliated treatments and those receiving kaolin and calcium carbonate protection a stronger fruity and sweet dominance in the first 10 seconds, while late defoliated treatments resulted in a more dominating and lasting sourness.
In conclusion, early defoliation with protecting particles not only favours acclimatisation of grapes to sun exposure leading to less sunburn, but also produces more fruity and less smoky, petrol flavoured wines

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Szmania Caterina¹, Waber Jonas¹and Fischer Ulrich¹

¹Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology

Contact the author

Keywords

climate change, sunburn damage, kaolin, off-flavour, descriptive analysis, grapes, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Effect of must temperature and aspergillopepsin-I supplementation on PR-protein derived peptides

Protein instability in wines is challenging, and despite many efforts to find satisfactory alternatives to bentonite, both in terms of stability and quality, the solutions are limited in the wine industry.

The use of plasma activated water in barrel disinfection: impact on oak wood composition

The use of barrels is a practice that improves the quality of wines. The porous structure of wood favors the accumulation of microorganisms that can deteriorate the quality of wines so that barrel cleaning and sanitizing treatments are essential. The burning of sulphur discs has been the most common practice in winemaking because ots biocide effect. Nevertheless, its effectiveness is still insufficient and it is harmful for human health.

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.