IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Variability of Constitutive Stilbenoid Levels and Profiles in Grape Canes (Vitis spp.) depending on Genetic and Environmental Factors

Variability of Constitutive Stilbenoid Levels and Profiles in Grape Canes (Vitis spp.) depending on Genetic and Environmental Factors

Abstract

Grape cane is a viticultural by-product that is currently underused or not used at all. Therefore, it bears a high potential for valorization due to the presence of anti-microbially active stilbenoids, being biologically relevant for plant defense. These compounds are highly interesting for applications in the agricultural sector as well as for the food and feed industry.
In this study, we comprehensively investigated the variability of levels and profiles of constitutive stilbenoids in grape canes. First, an HPLC-DAD-MS/MS-based screening of grape canes from 102 different V. vinifera L. cultivars (including seven fungus-resistant varieties) revealed not only a large inter-varietal variability of both total stilbenoid amounts (557-7748 mg/kg DW), but also of their qualitative compositions, showing highly heterogeneous profiles with different predominant stilbenoids (e.g. piceatannol, resveratrol, ε-viniferin or vitisin B). Focusing on each 13 genetically distinct clones of two varieties (Vitis vinifera L. cvs. Riesling and Pinot Noir), a pronounced intra-varietal variability was also observed (e.g., cv. Riesling 3236-6541 mg/kg).
We furthermore focus on the variability of stilbenoid levels in canes throughout three consecutive vintages (2017-2019) and for three pruning dates (October, December or February) from two cultivars (Pinot Noir and Accent). While varietal differences remained widely conserved throughout the years, strong qualitative discrepancies in stilbenoid profiles between and within seasons became evident. For instance, high contents of oligomeric stilbenoids were found in 2017 and 2019 with decreased temperature and increased precipitation levels, being low in the comparably warmer and dryer year 2018. Furthermore, we clearly show that the pruning date altered the stilbenoid content in grape canes and pruning in December yielded highest levels compared to the two other dates.
In brief, our study provides new insights into the strong variability in grape cane constitutive stilbenoid levels and profiles in both conventional and fungus-resistant Vitis varieties that are attributed to genetic as well as environmental factors.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Besrukow Paul1, Irmler Jan1, Schmid Joachim2, Stoll Manfred3, Winterhalter Peter4, Schweiggert Ralf1 and Will Frank1

1Department of Beverage Research, Geisenheim University
2 Department of Grapevine Breeding, Geisenheim University
3Department of General and Organic Viticulture, Geisenheim University
4Institute of Food Chemistry, Technische Universität Braunschweig

Contact the author

Keywords

resveratrol, viniferin, bioactive, phytoalexin, HPLC

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Management of grapevine water status with the DSS Vintel® provides evidence of sustainable irrigation strategies while maintaining wine quality of Pinot gris in Friuli-Venezia Giulia region, NE italy

Deficit irrigation strategies can be valuable means to improve grape quality while saving important amounts of water. A simple way to use deficit irrigation can be based on irrigating a vineyard with a determined level of crop evapotranspiration. Using a precise physiological parameter indicating water status, irrigation could be managed to maintain a specific pre-dawn leaf water potential.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Macromolecular characterization of disease resistant red wine varieties (PIWI)

Pilzwiderstandsfähige (PIWI) are disease resistant Vitis vinifera interspecific hybrid varieties that are receiving increasing attention for ability to ripen in cool climates and their resistance to grapevine fungal diseases. Wines produced from these varieties have not been characterized, especially regarding their macromolecular composition. This study characterised and quantified colloid-forming molecules (proteins, polysaccharides and phenolics) of red PIWI wines produced in the UK. METHODS: In 2019 6 wines were made from the PIWI varieties Rondo, Cabernet Jura, Cabernet Cortis, Cabernet Noir, Regent and Cabertin grown at the Plumpton Rock Lodge Vineyard in Sussex (UK) and harvested at similar level of maturity (TSS, pH and TA). All juice was chaptalized to the same potential alcohol of 12%. Small scale winemaking (1L) was performed in quadruplicate using Bodum® coffee plungers to manage maceration [1]. Residual sugar content, pH, and titratable acidity were monitored during fermentation. For finished wines, the protein and polysaccharide content was measured by HPLC-SEC [2], while the total phenolic content was assessed using the Folin-Ciocalteau method [3]. The protein profile of the wines was further investigated by SDS-PAGE [4]. RESULTS: Fermentations (n=24) were all carried out to completion within 8 days.

Evaluation of the site index model for viticultural zoning

Une variable composite, dénommée Indice de Site (SI), intégrant les propriétés physiques du sol et le mésoclimat, avait été proposée pour caractériser les terroirs dans le cadre d’une étude des vignobles de Cabernet Sauvignon de Hawke’s Bay en Nouvelle Zélande.

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.