IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Variability of Constitutive Stilbenoid Levels and Profiles in Grape Canes (Vitis spp.) depending on Genetic and Environmental Factors

Variability of Constitutive Stilbenoid Levels and Profiles in Grape Canes (Vitis spp.) depending on Genetic and Environmental Factors

Abstract

Grape cane is a viticultural by-product that is currently underused or not used at all. Therefore, it bears a high potential for valorization due to the presence of anti-microbially active stilbenoids, being biologically relevant for plant defense. These compounds are highly interesting for applications in the agricultural sector as well as for the food and feed industry.
In this study, we comprehensively investigated the variability of levels and profiles of constitutive stilbenoids in grape canes. First, an HPLC-DAD-MS/MS-based screening of grape canes from 102 different V. vinifera L. cultivars (including seven fungus-resistant varieties) revealed not only a large inter-varietal variability of both total stilbenoid amounts (557-7748 mg/kg DW), but also of their qualitative compositions, showing highly heterogeneous profiles with different predominant stilbenoids (e.g. piceatannol, resveratrol, ε-viniferin or vitisin B). Focusing on each 13 genetically distinct clones of two varieties (Vitis vinifera L. cvs. Riesling and Pinot Noir), a pronounced intra-varietal variability was also observed (e.g., cv. Riesling 3236-6541 mg/kg).
We furthermore focus on the variability of stilbenoid levels in canes throughout three consecutive vintages (2017-2019) and for three pruning dates (October, December or February) from two cultivars (Pinot Noir and Accent). While varietal differences remained widely conserved throughout the years, strong qualitative discrepancies in stilbenoid profiles between and within seasons became evident. For instance, high contents of oligomeric stilbenoids were found in 2017 and 2019 with decreased temperature and increased precipitation levels, being low in the comparably warmer and dryer year 2018. Furthermore, we clearly show that the pruning date altered the stilbenoid content in grape canes and pruning in December yielded highest levels compared to the two other dates.
In brief, our study provides new insights into the strong variability in grape cane constitutive stilbenoid levels and profiles in both conventional and fungus-resistant Vitis varieties that are attributed to genetic as well as environmental factors.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Besrukow Paul1, Irmler Jan1, Schmid Joachim2, Stoll Manfred3, Winterhalter Peter4, Schweiggert Ralf1 and Will Frank1

1Department of Beverage Research, Geisenheim University
2 Department of Grapevine Breeding, Geisenheim University
3Department of General and Organic Viticulture, Geisenheim University
4Institute of Food Chemistry, Technische Universität Braunschweig

Contact the author

Keywords

resveratrol, viniferin, bioactive, phytoalexin, HPLC

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impacts of fumaric acid addition at the bottling on Cabernet Sauvignon wine quality. Comparison with tartaric acid addition.

Climate change and reduction of inputs are two major challenges for viticulture and oenology. With increasing temperature, wines become less acid and microbiologically less stable (1).

Prove preliminari dl caratterizzazione del vino gutturnio dei colli piacentini

The “GuIturnio dei Colli Piacentini” V.Q.PR.D. results from the vinification of Barbera (55-70%) and Bonarda (30-40%) cultivars, grown in the hilly area of the Piacenza district, identified by the DM 31-07-93 art. 3.
The present work concerns the “zonation” of this area, constituted by 3 valleys Tidone (A), Nure (B) and Arda (C )

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

Soave beyond the zonation

In a previous zoning program (1998-2002), climatic and pedological factors were able to distinguish 14 terroir within the Soave DOC area where wine characteristics are well recognizable. Nevertheless, in the past vinegrowers identified several vineyards where a better quality of the grapes and wines could be obtained. So, « beyond the zonation » will aim to suggest a new methodology to characterise the Cru, starting with 15 vineyards that were selected in the Soave Classico DOC area. In the year 2005, a meteorological station was positioned in each vineyard and temperature data were collected; because of the limited area of investigation, only 3 rain sensors were set up.

Removal of white wine heat unstable proteins by using proteases and flash pasteurization-comparison with bentonites treatments

White wine protein haze can be prevented by removing the grape juice proteins, currently achieved by bentonite addition. To avoid wine volume loss and to minimizes aroma stripping, degrading haze-forming proteins in wine with proteases is a particularly interesting alternative to bentonite. In the present study, two fungal proteases treatments combined with different heating (50, 60, 72 °C) + refreshing steps, were applied on Gewürztraminer grape juice, and compared to bentonite treatments. The impact of these 19 treatments on the wine haze risks was determined by using two heat tests at 50 °C (heating during 30 to 120 min) and 80 °C (heating during 5 to 60 min). The protein contents and compositions were also estimated using the SDS-PAGE + densitometric integration techniques.