GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Abstract

Abstract: Context and purpose of the study – Berry shriveling (BS) in vineyards are caused by numerous factors such as sunburn, dehydration, stem necrosis. Climate change results in an increase in day and night temperatures, rainfall throughout the year, changes in the timing and quantities, long dry summers and a combination of climatic variability such as floods, droughts and heatwaves). Grape development and its composition at harvest is influenced by the latter as grape metabolites are sensitive to the environmental conditions. The grape berry experiences water loss and an increase in flavour development as a result of the BS. An increased sugar content in grapes will result in higher alcohol wines and concentration of grape aromas which may be detrimental to the final wine quality. More so, crop estimations are negatively impacted as a result of BS which results in lower compensation for grape producers. This pilot study seeked to investigate the berry weight loss in twelve Vitis vinifera (L.) cultivars in WashingtonState.

Material and methods – This study was conducted during the 2018 growing seasons at the Washington State University (WSU) Irrigated Agriculture Research and Extension Center (IAREC) in Prosser, Washington, USA (46°17’N; 119°44’W; 365 m a.s.l.). The vineyard contained 30 wine grape cultivars (Vitis vinifera) separated into 16 main blocks of 13 row seach along with border sections of 5 vines each. All vines were planted at a spacing of m × 2.7 m (2058 vines/hectare). Grape cultivars were separated into groups of either white or red, with all vines planted in a north-south orientation using the Vertical Shoot Positioned (VSP) training system.Each of the 16 main blocks was dedicated too neoffour main cultivars;Merlot,CabernetSauvignon,Chardonnay, orRiesling. Border sections containing the additional 26 cultivars were located on the southern, eastern, and western portionsofthevineyard.Eachborder cultivar sectionconsistedofthreeorfourrepetitionsoffivevineseach.All weather data was gathered from the Roza automated weather station and the WSU AgWeatherNet system (AgWeatherNet2018).Berry fresh weight and total soluble solids were determined just after véraison throughout berry development.

Results – In this study on weight loss in ripening white (Chardonnay, Weisser Riesling, Gewurztraminer, Alvarinho, Muscat blanc and Sémillon) and red grape cultivars (Cabernet Sauvignon, Merlot noir, Grenache, Lemberger, Malbec, Cabernet franc) ripening curves of non-solutes per berry (mostly water) were similar to the berry weight curves. Solutes per berry (mostly sugar) increased to a maximum berry weight for most of the cultivars. Prior to véraison phloem sap is the only source for water and solutes that enter grape berries until maximum berry weight followed by a decrease in the solutes per berry. Later during the ripening stage berry shrinking occurred due to elevated transpiration, which resulted in an increase in ˚Brix (solutes). Grape cultivar, environmental and cultivation practices have an impact on the concentration of berry of solutes, which dictates the composition and will have an impact on the wine quality. However, this study needs to be repeated and the wine quality should be assessed.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Erna BLANQUAERT1*, Markus KELLER2

1 Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland7602, South Africa
2 Irrigated Agricultural Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA99350

Contact the author

Keywords

grape berry, berry weight, berry shrinkage

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.