IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Abstract

Wine aroma is a complex gaseous mixture composed of various compounds; some of these molecules derive directly from the grapes while most of them are released and synthetized during fermentation or are due to ageing reactions. Among the latter class of compounds, carbonyls are the principal products of oxidation reactions which take place during the storing time. Volatile carbonyl compounds (VCCs) are related to aromatic nuances of vanilla, caramel, butter, honey, potato, orange, lemon, violets, cider and plum, which are pleasant scents characteristics of oxidized wines. However, apart from cases where it is a deliberate process, oxidation is commonly undesired and the presence of a relevant content of carbonyls is related to aroma defects. Because of that, monitoring the concentration of VCCs could be added as a quality control for the evaluation of a complete fermentation, correct winemaking style, and proper bottling and storage. In this research an HS-SPME method1 was optimized and validated with the aim to be used as a tool to achieve this goal. The use of a solvent-free extraction allowed to maximize the coherence to the Green Analytical Chemistry principles with a simultaneous achievement in performance, reliability and robustness. In this method, all sample preparation steps were automated using the autosampler minimizing the human time consumption to enhance the scalability to routine analysis. As many as 46 VCCs (mainly linear aldehydes, Strecker aldehydes, unsaturated aldehydes, ketones, and many other) were the analytes under investigation. All compounds showed a good linearity spanning from approximately 0.1 to 100 µg/L (R2>0.99). Intra-day and 5 days inter-days repeatability showed an RSD

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Piergiovanni Maurizio1, Carlin Silvia2, Lotti Cesare2, Vhrovsek Urska2 and Mattivi Fulvio1,2

1Center Agriculture Food Environment (C3A), University of Trento, via Edmund Mach 1, San Michele all’Adige (TN) Italy
2Center Research and Innovation, Edmund Mach Foundation, Italy3Affiliation of the third 

Contact the author

Keywords

Carbonyls, oxidation, accelerated ageing, HS-SPME, quality control

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Three Nebbiolo clone anthocyanin profile as affected by environmental conditions

Vitis vinifera ‘Nebbiolo’ cultivar is a 3’-subsituted anthocyanin prevalent wine variety. It is grown in North-West Italy for the production of high quality ageing wines. In the present work berry skin anthocyanin amounts and profiles of the clones CVT 308, CVT 423 and CVT 142 were studied in 2004 and in 2005 in four environmentally different locations of North-West Italy: Donnas (steep mountain area), Monforte (hilly area, with a pH of 8.1), Vezza (hilly area, with a pH of 8.2) and Lessona (plain area, with a pH of 4.8).

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

French wine sector facing climate change (part. 1): A national strategy built on a foresight and participatory approach

A foresight study was carried out by a group of experts from INRAE, universities, INAO and FranceAgriMer from 2014 as part of the multidisciplinary “laccave” project intended to anticipate climate change in the French wine industry. The initial objective was to initiate an interdisciplinary dialogue between researchers and to feed their questions in a more systemic way. The scenario development method made it possible to build possible futures for the wine sector in the face of climate change. It began by drafting four adaptation strategies, combining different possible intensities of innovation and relocation of the vineyard.

Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

An alternative to improve grape quality is the application to the vineyard of elicitors. Although these compounds were first used to increase resistance of plants against pathogens, it has been found that they are also able to induce mechanisms involved in the synthesis of phenolic compounds and some amino acids. However, researches about the influence of elicitors on grape volatile composition are scarcely. Therefore, the aim of this work was to study the influence of methyl jasmonate (MeJ) foliar application on grape aroma composition over three consecutive vintages. MeJ was applied to Tempranillo grapevines at a concentration of 10 mM in 2013, 2014, and 2015 years. Control plants were sprayed with water.

IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: typeofthepublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Drought tolerance of varieties in semi-arid areas: can the behavior of Tempranillo be improved by varieties of its own lineage?

Tempranillo is the most widely grown red grapevine variety in Spain, currently representing 42% of the total number of red varieties and 21% of the total vineyard area. Due to the economic importance that this variety represents in Spanish viticulture, in some areas where it is traditionally grown, there is a special concern about the viability of the future growing of this variety is being compromised by the climate change effects.

Red wine oxidation study by accelerating ageing tests and electrochemical method

Red wines can undergo many undesirable changes during the winemaking process and storage, particularly oxidative degradation due to numerous atmospheric oxygen intakes. This spoilage can impact organoleptic properties and color stabilization but this impact depends on the wine composition. Phenolic compounds constitute primary targets to oxidation reactions

Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

The measurement of carbon isotopic discrimination in grape sugars 13 at harvest (δ C) is an integrated assessment of water status during ripening.

New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

In table grapes seedlessness is a crucial breeding target, mainly results from stenospermocarpy, linked to the Thompson Seedless variety. Several studies investigated the genetic control of seedlessness identifying AGL11, a MADS-box transcription factor, as a crucial gene.
We performed a deep investigation of the whole AGL11 gene sequence in a collection of grapevine varieties revealing three different promoter-CDS combinations. By investigating the expression of the three AGL11 alleles and evaluating their ability to activate the promoter region, we show that AGL11 regulates its transcription in a specific promoter-CDS manner. By a multi-AGL11 co-expression analysis we identified a methyl jasmonate esterase, an indole-3-acetate beta-glucosyltransferase, and an isoflavone reductase as top AGL11 candidate targets. In vivo experiments further confirmed AGL11 role in regulating these genes, demonstrating its significant influence in seed development and thus in seedlessness trait.

Evaluation of glutathione content in four white varieties in the d.o. Ca. Rioja (Spain)

Glutathione is a tripeptide that is mainly found in reduced form in grapes. It generates during the maturation of the grape, increasing significantly after veraison [1].