IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Abstract

Wine aroma is a complex gaseous mixture composed of various compounds; some of these molecules derive directly from the grapes while most of them are released and synthetized during fermentation or are due to ageing reactions. Among the latter class of compounds, carbonyls are the principal products of oxidation reactions which take place during the storing time. Volatile carbonyl compounds (VCCs) are related to aromatic nuances of vanilla, caramel, butter, honey, potato, orange, lemon, violets, cider and plum, which are pleasant scents characteristics of oxidized wines. However, apart from cases where it is a deliberate process, oxidation is commonly undesired and the presence of a relevant content of carbonyls is related to aroma defects. Because of that, monitoring the concentration of VCCs could be added as a quality control for the evaluation of a complete fermentation, correct winemaking style, and proper bottling and storage. In this research an HS-SPME method1 was optimized and validated with the aim to be used as a tool to achieve this goal. The use of a solvent-free extraction allowed to maximize the coherence to the Green Analytical Chemistry principles with a simultaneous achievement in performance, reliability and robustness. In this method, all sample preparation steps were automated using the autosampler minimizing the human time consumption to enhance the scalability to routine analysis. As many as 46 VCCs (mainly linear aldehydes, Strecker aldehydes, unsaturated aldehydes, ketones, and many other) were the analytes under investigation. All compounds showed a good linearity spanning from approximately 0.1 to 100 µg/L (R2>0.99). Intra-day and 5 days inter-days repeatability showed an RSD

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Piergiovanni Maurizio1, Carlin Silvia2, Lotti Cesare2, Vhrovsek Urska2 and Mattivi Fulvio1,2

1Center Agriculture Food Environment (C3A), University of Trento, via Edmund Mach 1, San Michele all’Adige (TN) Italy
2Center Research and Innovation, Edmund Mach Foundation, Italy3Affiliation of the third 

Contact the author

Keywords

Carbonyls, oxidation, accelerated ageing, HS-SPME, quality control

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Chemical boundaries of wine identity: rationalizing grape and wine aroma diversity for improved terroir management

Aims: Wine perceived quality lies on a number of different factors. Among these, sensory features, which are in turn dependent on chemical composition, play a primary role. There is traditionally a great emphasis on producing wines that have specific sensory profiles, particularly aroma, that reflect identity features connected to the place and the variety of origin. In the case of high quality

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Combining effect of leaf removal and natural shading on grape ripening under two irrigation strategies in Manto negro (Vitis vinifera L.)

The increasingly frequent heat waves during grape ripening pose challenges for high quality wine grape production. Defoliation is a common practice that can improve the control of diseases in bunches, but also it increases the exposure to sunlight. Grapes exposed to solar radiation reach temperatures over the optimum for berry development and maturation. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 using Manto negro wine grapes to study the effect of applied irrigation and different light exposure levels on grape quality. Two irrigation treatments were imposed based on the frequency and amount of water doses in a four-block experimental vineyard at Bodega Ribas (Mallorca). Three light exposure treatments were randomly applied in each irrigation plot. The light treatments included exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening. Leaf area index and canopy porosity was estimated every 2 weeks. Midday leaf water potential was measured weekly. Additionally, apparent electrical conductivity was measured between rows to estimate the soil water content variability. Light and temperature sensors were installed at the bunch level to quantify the differences in bunch temperature and light intensity among treatments. The effect of irrigation and cluster light exposure on berry weight, TSS, TA, malic acid, tartaric acid, K+, and pH were analysed at 5 moments along grape ripening. During different heat waves, the natural shading technique decreased the maximum bunch temperature around 10 °C respect to the exposed bunches in both irrigation strategies. The combination of defoliation and shading techniques after softening decreased TSS at harvest and affected most of the quality parameters during the last stages of ripening, showing an interesting technique to delay ripening in warm viticulture areas.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

The aim of this study is to evaluate the role of pH on both the acetaldehyde chemistry and wine phenolics evolution over the aging period. In addition, the effect of both an early and late acidification was evaluated

IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: typeofthepublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

A applied viticultural zoning, based on the “secteurs de la reference” methodology, in the Cognac vineyard (France)

Dans les Charentes, en réponse à une crise de production du vignoble destiné à la production de Cognac, un plan de diversification viticole pour des vins de pays de qualité est mis en place. Il nécessite une connaissance des sols et de leurs caractéristiques viticoles pour orienter le choix des types de vins et adapter l’itinéraire technique de production.

Grape ripening timing as a base for viticultural zoning: an agro-ecological approach

Due to the central role of the ripening timing in the evaluation of the varietal response to the environmental resources, a method to manage maturation curves has been developed. The method produces an index of veraison precocity and overcomes several methodological problems, like the visual evaluation of the veraison point and the multi-annual and multi-varieties data processing. It is based on a statistical and mathematical processing of the sugar ripening curves.

Terroir analysis and its complexity

Terroir is not only a geographical site, but it is a more complex concept able to express the “collective knowledge of the interactions” between the environment and the vines mediated through human action and “providing distinctive characteristics” to the final product (OIV 2010). It is often treated and accepted as a “black box”, in which the relationships between wine and its origin have not been clearly explained. Nevertheless, it is well known that terroir expression is strongly dependent on the physical environment, and in particular on the interaction between soil-plant and atmosphere system, which influences the grapevine responses, grapes composition and wine quality. The Terroir studying and mapping are based on viticultural zoning procedures, obtained with different levels of know-how, at different spatial and temporal scales, empiricism and complexity in the description of involved bio-physical processes, and integrating or not the multidisciplinary nature of the terroir. The scientific understanding of the mechanisms ruling both the vineyard variability and the quality of grapes is one of the most important scientific focuses of terroir research. In fact, this know-how is crucial for supporting the analysis of climate change impacts on terroir resilience, identifying new promised lands for viticulture, and driving vineyard management toward a target oenological goal. In this contribution, an overview of the last findings in terroir studies and approaches will be shown with special attention to the terroir resilience analysis to climate change, facing the use and abuse of terroir concept and new technology able to support it and identifying the terroir zones.

Combining high-power ultrasound and oenological enzymes during winemaking for improving red wine chromatic characteristics

he use of high-power ultrasound (US) is proving of great interest to the oenological industry due to its effects in the improvement of wine organoleptic characteristics, especially in terms of color [1, 2].

Effect of elicitors and ripening moment on the phenolic composition of Monastrell

Grapevine (Vitis vinifera L.) is a globally cultivated crop and economically significant, particularly in the wine industry (Varela et al., 2024). Climate change is already affecting vineyards and is expected to worsen (Averbeck et al., 2019; Dupuis and Knoepfel, 2011).