IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Addition of Malvasia di Candia Aromatica must and marcs to Golden Ale beer wort to obtain different Italian Grape Ales

Addition of Malvasia di Candia Aromatica must and marcs to Golden Ale beer wort to obtain different Italian Grape Ales

Abstract

Nowadays, the recovery of secondary resources of wine industry is insufficient and the developing of new products and adjuvants from secondary raw materials could become a relevant sector of research. The re-use of byproducts derived from winemaking could improve the sustainability of wine industry and give additional value to other food industries. In the last decades the number of craft breweries have significantly grown all over the world and food market saturation with new food products seemed to be at an all-time high, including alcoholic beverages. For this reason, many breweries started to produce non-conventional beers, also using different raw materials such as ancient grains, spices, and fruits, trying to put on the market something that previously did not exist. Italian Grape Ale (IGA) beers are produced starting from pils or pale malt and should not exhibit a roasty, stout like, profile. Grape or grape must can be pasteurized before the addition and used at different stages of brewing boil, primary/secondary fermentation, or aging. The addition can range from 5% to 40 % of the wort composition. A proper option for brewers could be the addition of an aromatic grape variety to beer wort. Malvasia di Candia aromatica (MaCA) is a grapevine (Vitis vinifera L.) cultivar (cv.) that produces aromatic white grapes and is mainly cultivated in the Emilia Romagna province of Piacenza. Another possibility to make new products in beer industry is related to grape marcs addition in different stages of the brewing process with a high added value from a chemical and nutritional point of view. This work studied the possible addition of MaCA grape must and marcs to Golden Ale beer wort in different percentages: 10 and 20%. Fermentations were carried out in triplicate with a control made of 100% beer wort. General parameters, organic acids (LC-DAD), aroma compounds (GC-MS), target polyphenols (LC-MS/MS) and sensory evaluation were carried out to evaluate changes after MaCA juice and marcs addition. Increasing in acidity values were measured in final products after MaCA juice addition compared to controls (1.98, 2.31, and 2.41 g/L of tartaric acid equivalent in beer controls, MaCA 10%, and MaCA 20%, respectively) and after MaCA marcs addition (1.98, 3.15, and 3.40 g/L of tartaric acid equivalent in beer controls, MaCA 10%, and MaCA 20%, respectively). Other results confirmed that beers with 20% MaCA juice addition and 10% MaCA marcs addition resulted more complex in aroma profile with the presence of free monoterpenic compounds, expecially β-citronellol, linalool, linalool oxides, nerol and α-terpineol. Sensory evaluation confirmed differences in aroma intensity and acidity perception between different beers. Panelists preferred the addition of 20 % of MaCA juice as the best option. Collaboration with a craft brewery will carried out to produce beers with addition of 20 % of MaCA juice and 10% of MaCA marcs in a 12-hL scale.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Romanini Elia1, Gabrielli Terenzio1, Leni Giulia2, Mulazzi Annalisa2, Braceschi Gian Paolo1, Chinnici Fabio3, Castro Marin Antonio3 and Lambri Milena1

1Department for Sustainable Food Process, Università Cattolica del Sacro Cuore
2Department of Animal Science, Food, and Nutrition, Università Cattolica del Sacro Cuore
3Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy

Contact the author

Keywords

grape, marcs, byproducts, beermaking, IGA

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

This work was aimed at setting up a methodology to define and map the «Unités Terroir de Reconnaissance» (UTR), combining environmental information stored in a Soil Information System with experimental data coming from benchmark vineyards of Sangiovese vine.

Building of a hierarchy of wines based on terroirs: an initiative from the producers of Muscadet

The Muscadet area is situated in the southeast of Nantes, close to the Atlantic coast. It constitutes the western extension
of the French vineyard “Loire Valley”. The Muscadet is renowned and often spontaneously linked to a white wine.
However it remains misconceived as an ordinary wine, lacking authenticity.

The impact of sustainable management regimes on amino acid profiles in grape juice, grape skin flavonoids, and hydroxycinnamic acids

One of the biggest challenges of agriculture today is maintaining food safety and food quality while providing ecosystem services such as biodiversity conservation, pest and disease control, ensuring water quality and supply, and climate regulation. Organic farming was shown to promote biodiversity and carbon sequestration, and is therefore seen as one possibility of environmentally friendly production. Consumers expect organically grown crops to be free from chemical pesticides and mineral fertilizers and often presume that the quality of organically grown crops is different or higher compared to conventionally grown crops. Integrated, organic, and biodynamic viticulture were compared in a replicated field trial in Geisenheim, Germany (Vitis vinifera L. cv. Riesling). Amino acid profiles in juice, grape skin flavonoids, and hydroxycinnamic acids were monitored over three consecutive seasons beginning 7 years after conversion to organic and biodynamic viticulture, respectively. In addition, parameters such as soil nutrient status, yield, vigor, canopy temperature, and water stress were monitored to draw conclusions on reasons for the observed changes. Results revealed that the different sustainable management regimes highly differed in their amino acid profiles in juice and also in their skin flavonol content, whereas differences in the flavanol and hydroxycinnamic acid content were less pronounced. It is very likely that differences in nutrient status and yield determined amino acid profiles in juice, although all three systems showed similar amounts of mineralized nitrogen in the soil. Canopy structure and temperature in the bunch zone did not differ among treatments and therefore cannot account for the observed differences in favonols. A different light exposure of the bunches in the respective systems due to differences in vigor together with differences in berry size and a different water status of the vines might rather be responsible for the increase in flavonol content under organic and biodynamic viticulture.

Integrating genomic prediction into grapevine breeding programs

Genomic selection (GS) has emerged as a transformative tool for accelerating breeding programs by predicting the genetic potential of individuals using genome-wide markers.

Measurement of redox potential as a new analytical winegrowing tool

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).