IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Kinetic investigations of the Gewürztraminer volatile organic compounds and color at different temperatures and pHs

Kinetic investigations of the Gewürztraminer volatile organic compounds and color at different temperatures and pHs

Abstract

Gewürztraminer is a well-known wine famous for its aroma profile, which is characterized by rose petals, cloves, lychees, and other tropical fruit notes. It is cultivated worldwide, including the Trentino Alto Adige region located in northern Italy, especially in the Tramin zone, and it has long been studied trying to understand what the most characterizing volatile aroma components are [1-4]. The terpenes (geraniol, cis rose oxide, citronellol, and linalool) are between the major responsible for the characteristic floral aroma of this cultivar’s grapes and wines. Throughout the winemaking and storage, acid-catalysed rearrangements take place producing cyclic and hydroxylated forms of the above terpenes, which generally have minor perception thresholds and so the wine’s floral aroma character decreases [5]. It has been demonstrated that the temperature and pH strongly influence these reactions, however their kinetics are not studied in detail.

The first aim of this work was to develop and validate a fast, modern, sensitive, selective, robust, and comprehensive protocol for the quantification of primary, secondary, and tertiary wine volatile compounds by using solid-phase extraction (SPE) cartridges for the sample preparation and a fast GC-MS/MS for analysis [1]. Second aim was to apply this protocol and study the kinetics of the reactions occurring on the Gewürztraminer wine volatile compounds during its storage at various temperatures and pHs. In parallel also
the colour of the wines was monitored by using the CIELAB method. The produced method gave us the possibility to measure 64 aroma compounds, with big importance in wine science, by using fewer organic solvents, having short chromatographic run, and increasing specificity and sensitivity due to the MRM MS-mode used.

The results of the second part of the study, demonstrated the behaviour of volatile aroma compounds, with their absolute concentrations. The investigated reactions included the degradation of the linear terpenes (linalool, geraniol, nerol, etc), the ethyl esters of fatty
acids and volatile phenols on the one hand; and the formation of the cyclic terpenes (1,4-cineole, 1,8-cineole, terpineol, etc), the norisoprenoids (e.g. TDN and safranal) and the diprotic organic acids esters on the other hand.

In conclusion, we developed a modern protocol for the analysis of the wine aroma compounds and we underlined some key characteristics that a winemaker should take in consideration in the Gewürztraminer production and aging/storage. 

References

1. Carlin, S.; Lotti, C.; Correggi, L.; Mattivi, F.; Arapitsas, P.; Vrhovsek, U. “Measurement of the effect of accelerated aging on the aromatic compounds of Gewürztraminer and Teroldego wines, using a new SPE-GC-MS /MS protocol” Metabolites 2022, 12(2), 180.
2. Versini, G. Sull’aroma Del Vino “Traminer Aromatico” o “Gewürztraminer.” VIGNEVINI 1985, 12, 57–65.
3. Guth, H. Identification of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3022–3026. 
4. Román, T.; Tonidandel, T.; Larcher, R.; Celotti, E.; Nicolini, G. Importance of Polyfunctional Thiols on Semi-Industrial Gewürztraminer Wines and the Correlation to Technological Treatments. Eur. Food Res. Technol. 2018, 244, 379–386. 
5. Slaghenaufi, D.; Ugliano, M. “Norisoprenoids, Sesquiterpenes and Terpenoids Content of Valpolicella Wines During Aging: Investigating Aroma Potential in Relationship to Evolution of Tobacco and Balsamic Aroma in Aged Wine.” Front. Chem. 2018, 6.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Carlin Silvia1, Lotti Cesare1, Rapaccioli Attilio1, Mattivi, Fulvio1,2, Trenti Gianmaria3, Vrhovsek Urska1 and Arapitsas Panagiotis1,4

1Metabolomics Unit, Research and Innovation Centre Edmund Mach Foundation, Via Edmund Mach 1, 38010 San Michele all’ Adige, Italy
2Department of Cellular Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo, Trento, Italy
3Winery, Edmund Mach Foundation, Via Edmund Mach 1, 38010 San Michele all’Adige, Italy
4Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos str, Egaleo, 12243 Athens, Greece.

Contact the author

Keywords

fastGC, accelerated aging, storage, terpenes, Cielab

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Swiss program for the creation of fungal disease resistant grape varieties in Switzerland

Grapevine breeding is part of the research program of Agroscope in Switzerland since 1965. From 1965 to 1995, the aim of the Vitis vinifera crosses was to obtain a high resistance to grey rot (Botrytis cinerea), one of the most virulent fungal pathogens in the Swiss vineyard. In 2021, the grape varieties released from this first breeding program covered 936 ha of the 15’000 ha of the Swiss vineyard.
In 1996, a second breeding program aimed at obtaining, by classical interspecific hybridization, grape varieties resistant to downy mildew (Plasmopara viticola) and powdery mildew (Erisyphe necator) and less sensitive to grey rot (Botrytis cinerea). In order to accelerate and make the selection process more reliable, an early biochemical test was developed based on the natural defense mechanisms of the vine against downy mildew (stilbene phytoalexins). The synthesis of stilbenes (i.e., resveratrol and its oxidized dimers - and -viniférine) and pterostilbenes (methylated derivative) is among the most efficient induced defense mechanisms of grapevine against fungal pathogens on both the leaves and the clusters.

Heatwaves impacts on grapevine physiology, berry chemistry & wine quality

Climate change impacts on both yields and quality have increased over the past decades, with the effects of extreme climate events having the most dramatic and obvious impacts. Increasing length and intensity of heatwaves associated with increased water stress necessitates a reevaluation of climate change responses of grapevine and, ultimately, a reconsideration of vineyard management practices under future conditions. Here we summarize results from a three-year field trial manipulating irrigation prior to and during heatwave events to assess impacts of water application rates on vine health and physiology, berry chemistry, and wine quality. We also highlight potential mitigation strategies for extreme heat, both in terms of water application, as well as other cultural practices that could be widely applicable.

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.

Selected ion flow tube mass spectrometry: a promising technology for the high throughput phenotyping of grape berry volatilome

Wine grapes breeding has been concentrating a lot of efforts within the grape research community over the last decade. The quick phenotyping of genotype quality traits including aroma composition remains challenging. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), a technology first available in 2008 and developing rapidly, could be particularly valuable for this usage. The aims of this study were i) to use SIFT-MS, to analyze the whole volatilome from different grape varieties, ii) to assess the ability of this technology to discriminate varieties according to their grape aroma composition, and iii) to study the stability of SIFT-MS signal over maturation to define a sampling strategy.

VITIGEOSS Business Service: Task scheduling optimization in vineyards

Agriculture plantations are complex systems whose performance critically depends on the execution of several types of tasks with precise timing and efficiency to respond to different external factors. This is particularly true for orchards like vineyards, which need to be strictly monitored and regulated, as they are sensitive to diverse types of pests, and climate conditions. In these environments, managing and optimally scheduling the available work force and resources is not trivial and is usually done by teams of senior managers based on their experience. In this regard, having a baseline schedule could help them in the decision process and improve their results, in terms of time and resources spent.