IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The antioxidant properties of wine lees extracts in model wine

The antioxidant properties of wine lees extracts in model wine

Abstract

While the ethanol and tartaric acid contained in wine lees are typically recovered by distilleries, the remaining solid fraction (yeast biomass) is usually disposed of, thus negatively affecting the overall sustainability of the wine industry. Previously we demonstrated that the wine lees’ solid fraction could be submitted to a food-grade physical extraction method (autoclave, 20 min, 121°C) to yield yeast polysaccharides with proven foaming, emulsifying and wine stabilizing properties [1,2]. In this study, the autoclave extraction procedure was applied directly on lees from red winemaking. As a result, two extracts were obtained: the Total extract, namely the whole lees after autoclave containing the soluble and insoluble fractions; the Supernatant, containing only the soluble compounds released during extraction. The composition of the extracts in terms of protein, polysaccharides, glutathione, total thiols, and total polyphenol content, was determined by spectrophotometric and chromatographic analytical methods. Subsequently, the extract’s oxidative behavior was tested by dissolving them (0.5 g/L) in model wine (20% EtOH, 5 g/L tartaric acid, 5 mg/L Fe, 0.5 mg/L Cu) containing 30 mg/L free SO2 and 0.5g/L catechin. The O2 and SO2 consumption, color development (as a function of catechin degradation), and linear sweep voltammetry (LSV) behavior were investigated. The effect of the wine lees’ extracts was benchmarked against analogs extracts obtained from a lab-grown culture of the same yeast strain present in the wine lees. Samples prepared with the wine lees’ extracts showed a higher O2 and SO2 consumption rates compared to those prepared with the lab-grown yeast extracts. All extracts protected the catechin from oxidation, with the best protective action achieved by the Total wine lees extract. This extract, along with its analog from the lab-grown yeast culture, showed the greatest resistance to anodic oxidation according to LSV. The protective action on catechin displayed by all the extracts was not fully explainable by their content in antioxidant compounds as glutathione, thiols, and wine polyphenols. Interestingly, the fact that the best results were obtained using the Total extracts in which both the soluble (released polysaccharides) and insoluble (yeast cell walls) fractions were present, allowed to hypothesize that other compounds are involved in limiting the catechin oxidation. In this scenario, the candidates are the yeast membrane sterols as they possess an oxygen-consuming action, and yeast cell wall polysaccharides as they could bind to catechin thus making it unavailable for oxidation. To conclude, wine lees can be considered a novel source of yeast extract with potential oenological application also against quality-affecting oxidative reactions. If adopted on a large scale,  this wine lees valorization strategy would result in an improvement of the overall sustainability of the wine industry.

References

[1] De Iseppi, A., Marangon, M., Vincenzi, S., Lomolino, G., Curioni, A., & Divol, B. (2021). A novel approach for the valorization of wine lees as a source of compounds able to modify wine properties. LWT, 136, 110274.
[2] De Iseppi, A., Marangon, M., Lomolino, G., Crapisi, A., & Curioni, A. (2021). Red and white wine lees as a novel source of emulsifiers and foaming agents. LWT, 152, 112273.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

De IseppiAlberto1, Curioni Andrea1,2, Marangon Matteo1,2, Invincibile Diletta3, Slaghenaufi Davide3 and Ugliano Maurizio3

1Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Padua, Italy
2Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, Italy
3Department of Biotechnology, University of Verona, San Pietro in Cariano, Italy

Contact the author

Keywords

wine lees, wine oxidation, voltammetry, wine color, by-product valorization

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

Monitoring of ripening and yield of vineyards in Nemea region using UAV

Nemea region is the largest POD zone in Greece. Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated variety in Greece with significant wine potential.

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.