IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The antioxidant properties of wine lees extracts in model wine

The antioxidant properties of wine lees extracts in model wine

Abstract

While the ethanol and tartaric acid contained in wine lees are typically recovered by distilleries, the remaining solid fraction (yeast biomass) is usually disposed of, thus negatively affecting the overall sustainability of the wine industry. Previously we demonstrated that the wine lees’ solid fraction could be submitted to a food-grade physical extraction method (autoclave, 20 min, 121°C) to yield yeast polysaccharides with proven foaming, emulsifying and wine stabilizing properties [1,2]. In this study, the autoclave extraction procedure was applied directly on lees from red winemaking. As a result, two extracts were obtained: the Total extract, namely the whole lees after autoclave containing the soluble and insoluble fractions; the Supernatant, containing only the soluble compounds released during extraction. The composition of the extracts in terms of protein, polysaccharides, glutathione, total thiols, and total polyphenol content, was determined by spectrophotometric and chromatographic analytical methods. Subsequently, the extract’s oxidative behavior was tested by dissolving them (0.5 g/L) in model wine (20% EtOH, 5 g/L tartaric acid, 5 mg/L Fe, 0.5 mg/L Cu) containing 30 mg/L free SO2 and 0.5g/L catechin. The O2 and SO2 consumption, color development (as a function of catechin degradation), and linear sweep voltammetry (LSV) behavior were investigated. The effect of the wine lees’ extracts was benchmarked against analogs extracts obtained from a lab-grown culture of the same yeast strain present in the wine lees. Samples prepared with the wine lees’ extracts showed a higher O2 and SO2 consumption rates compared to those prepared with the lab-grown yeast extracts. All extracts protected the catechin from oxidation, with the best protective action achieved by the Total wine lees extract. This extract, along with its analog from the lab-grown yeast culture, showed the greatest resistance to anodic oxidation according to LSV. The protective action on catechin displayed by all the extracts was not fully explainable by their content in antioxidant compounds as glutathione, thiols, and wine polyphenols. Interestingly, the fact that the best results were obtained using the Total extracts in which both the soluble (released polysaccharides) and insoluble (yeast cell walls) fractions were present, allowed to hypothesize that other compounds are involved in limiting the catechin oxidation. In this scenario, the candidates are the yeast membrane sterols as they possess an oxygen-consuming action, and yeast cell wall polysaccharides as they could bind to catechin thus making it unavailable for oxidation. To conclude, wine lees can be considered a novel source of yeast extract with potential oenological application also against quality-affecting oxidative reactions. If adopted on a large scale,  this wine lees valorization strategy would result in an improvement of the overall sustainability of the wine industry.

References

[1] De Iseppi, A., Marangon, M., Vincenzi, S., Lomolino, G., Curioni, A., & Divol, B. (2021). A novel approach for the valorization of wine lees as a source of compounds able to modify wine properties. LWT, 136, 110274.
[2] De Iseppi, A., Marangon, M., Lomolino, G., Crapisi, A., & Curioni, A. (2021). Red and white wine lees as a novel source of emulsifiers and foaming agents. LWT, 152, 112273.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

De IseppiAlberto1, Curioni Andrea1,2, Marangon Matteo1,2, Invincibile Diletta3, Slaghenaufi Davide3 and Ugliano Maurizio3

1Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Padua, Italy
2Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, Italy
3Department of Biotechnology, University of Verona, San Pietro in Cariano, Italy

Contact the author

Keywords

wine lees, wine oxidation, voltammetry, wine color, by-product valorization

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Study of the “Charentes terroir” for wine production of Merlot and Sauvignon: method, installation of the experimental device, first results

Cognac vineyard is mainly dedicated to brandy production. Within the vineyard restructuring context, one part is turned over wine varieties for wine production (about 1,500 ha planted from 1999 to 2005). Today, the new wine producers need technical references about qualitative potential of the « Charentes Terroir », varieties and adapted vineyard management.
In order to answer to this professional request, an observatory of 18 plots of Merlot and 12 plots of Sauvignon have been laid out since 2003 and 2004 on various kinds of pedoclimate.

Vineyard management for environment valorisation

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...