IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 A new chemiluminescence method related to molecules derived from Botrytis cinerea for characterization of Aszu wines from Tokaj, from Hungary

A new chemiluminescence method related to molecules derived from Botrytis cinerea for characterization of Aszu wines from Tokaj, from Hungary

Abstract

For the chemical characterization of Aszu wines from Tokaj region our aim is to develop a biochemical method which is related to Botrytis cinerea. As in these wines there are continuously present small amounts of Cytochrome C enzyme derived from apoptotic cells infected with Botrytis (1), and H2O2 produced during the oxidation of alcohols by Botrytis (2), and their oxidative interaction can produce reactive “ferril-peroxide complexes  inducing chemiluminescence (photon emission) (3), the  principle of method is as follows: the capability of various Aszu wines is measured by luminometer how they can stimulate the production of chemiluminescence of basal biochemical reaction (Cytochrome C + H2O2) compared to a standard solution of „artificial furmint”. The size of stimulation is expressed numerically by „Index of Stimulation” (I.S.). Based on a great number of measurements evaluated by statistical methods we created three categories for the quality of Aszu wines from the aspect of Botrytis effects valid for given laboratory condition. „Tokaj Aszu of poor quality”: I. S. < 2,79„Tokaj Aszu of outstanding quality”: I.S. = 2,80-3,54„Tokaj Aszu of excellent quality”: S.I. > 3,55 These categories correlate well with other factors of Aszu quality (aroma, flavour, smell) but do not cover them totally.  The I.S. values of Aszu wines show a significantly positive correlation with the concentrations of gluconic acid (p

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Sándor Sipka1, NagyAndrea1, Csősz Éva2 and Baráth Sándor1

1Division of Clinical Immunology University of Debrecen, Móricz Zs. Str. 22. 4032 Debrecen, Hungary
2Department of Biochemistry and Molecular Biology University of Debrecen, Hungary

Contact the author

Keywords

chemiluminescence assay, Botrytis cinerea, Aszu of Tokaj, Cytochrome C, hydrogen peroxide

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.

Climate modeling at local scale in the Waipara winegrowing region in the climate change context

In viticulture, a warming climate can have a very significant impact on grapevine development and therefore on the quality and characteristics of wines across different spatial scales, ranging from global to local. In order to adapt wine-growing to climate change, global climate models can be used to define future scenarios, but only at the scale of major wine regions. Despite the huge progress made over the last ten years in terms of the spatial resolution of climate models (now downscaled to a few square kilometres), they are not yet sufficiently precise to account for the local climate variability associated with such parameters as local topography, in spite of these parameters being decisive for vine and wine characteristics. This study describes a method to downscale future climate scenarios to vineyard scale. Networks of data loggers have been used to collect air temperature at canopy level in the Waipara winegrowing region (New Zealand) over five growing seasons. These measurements allow the creation of fine-scale geostatistical models and maps of temperature (at 100 m resolution) for the growing season. In order to model climate change at pilot site scale, these geostatistical models have been combined with regional climate change predictions for the periods 2031-2050 and 2081-2100 based on the RCP8.5 climate change scenario. The integration of local climate variability with regionalized climate change simulations allows assessment of the impacts of climate change at the vineyard scale. The improved knowledge gained using this methodology results from the increased horizontal resolution that better addresses the concerns of winegrowers. The results provide the local winegrowers with information necessary to understand current processes, as well as historical and future viticulture trends at the scale of their site, thereby facilitating decisions about future response strategies.

Pesticide – Free viticulture: towards agroecological wine-producing socio-ecosystems

Can we cultivate grapevine without pesticides? This is a huge challenge for this emblematic crop, which is one of the largest users of plant protection products. Pesticides are mainly used to protect the vine against leaf diseases (powdery mildew, mildew, black-rot), even in organic farming, which uses copper in particular. What are the research avenues that can help eliminate pesticides today?

Prise en compte et mutations de l’acidité volatile au XXe siècle : les évolutions règlementaires, scientifiques et qualitatives d’un composé du vin au regard de l’histoire

Les composés actifs du vin ont, jusqu’ici, peu fait l’objet d’études sur le temps long. Le développement de l’œnologie, de l’analyse des vins et, de manière concomitante, l’essor des règlementations vinicoles au XXe siècle révèlent pourtant au grand jour le poids de ces composés et leurs évolutions. Dans cette communication, nous souhaitons montrer comment l’acidité volatile des vins,

Multisensory experiential wine marketing

Interest in the pairing, or matching, of wine with music goes way back, with commentators initially using musical metaphors merely to describe the wines that they were writing about. More recently, however, this has transformed into a growing range of multisensory tasting events in which wine and music are deliberately paired to assess, or increasingly to illustrate, the impact of the latter on