IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 A new chemiluminescence method related to molecules derived from Botrytis cinerea for characterization of Aszu wines from Tokaj, from Hungary

A new chemiluminescence method related to molecules derived from Botrytis cinerea for characterization of Aszu wines from Tokaj, from Hungary

Abstract

For the chemical characterization of Aszu wines from Tokaj region our aim is to develop a biochemical method which is related to Botrytis cinerea. As in these wines there are continuously present small amounts of Cytochrome C enzyme derived from apoptotic cells infected with Botrytis (1), and H2O2 produced during the oxidation of alcohols by Botrytis (2), and their oxidative interaction can produce reactive “ferril-peroxide complexes  inducing chemiluminescence (photon emission) (3), the  principle of method is as follows: the capability of various Aszu wines is measured by luminometer how they can stimulate the production of chemiluminescence of basal biochemical reaction (Cytochrome C + H2O2) compared to a standard solution of „artificial furmint”. The size of stimulation is expressed numerically by „Index of Stimulation” (I.S.). Based on a great number of measurements evaluated by statistical methods we created three categories for the quality of Aszu wines from the aspect of Botrytis effects valid for given laboratory condition. „Tokaj Aszu of poor quality”: I. S. < 2,79„Tokaj Aszu of outstanding quality”: I.S. = 2,80-3,54„Tokaj Aszu of excellent quality”: S.I. > 3,55 These categories correlate well with other factors of Aszu quality (aroma, flavour, smell) but do not cover them totally.  The I.S. values of Aszu wines show a significantly positive correlation with the concentrations of gluconic acid (p

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Sándor Sipka1, NagyAndrea1, Csősz Éva2 and Baráth Sándor1

1Division of Clinical Immunology University of Debrecen, Móricz Zs. Str. 22. 4032 Debrecen, Hungary
2Department of Biochemistry and Molecular Biology University of Debrecen, Hungary

Contact the author

Keywords

chemiluminescence assay, Botrytis cinerea, Aszu of Tokaj, Cytochrome C, hydrogen peroxide

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Reusable system for wine bottles: An analysis of acceptance among German wine consumers

Consumer demands for environmentally friendly products, including wine, are constantly increasing.

Freeze-thaw treatment to enhance phenolic ripening and tannin oxidation of seeds

Phenolic ripening represents a major interest for quality wine producers. Nevertheless, climatic or genotypical limitations can often prevent optimal maturation process. During winemaking seeds can be easily separated and technologically processed to improve their quality.

The role of vine trunk height in delaying grape ripening: insights for viticultural adaptation strategies

Global changes in temperature patterns necessitate the development of viticultural adaptation strategies. One promising approach involves modifying the training system and elevating trunk height. This study explored the potential of raising the vine trunk as an adaptive strategy to counteract the effects of increasing temperatures and delay ripening. Thermal conditions, radiation levels, and must composition were measured at different heights (10 and 150 cm) in a commercial vineyard of the minority variety Maturana Blanca, trained on a vertical cordon.

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture.