IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

Abstract

New pathogen resistant varieties allow an efficient and greatly reduced use of fungicides. These new varieties promise, therefore, an enormous potential to reach the European Green Deal aim of a 50% reduction of pesticides in EU agriculture by 2030. The selection process, and particularly quality evaluation of the wines produced, are a bottleneck slowing down the breeding of new pathogen resistant grapevine varieties. Our major aim is therefore the development of predictive models for wine quality traits. Their implementation in the selection process would considerably increase the efficacy of grapevine breeding.The centrepiece of our study is a segregating white wine F1-population of ‘Calardis Musqué’ and ‘Villard Blanc’ consisting of 150 genotypes with 13 plants per genotype at two locations. A ‘Genotyping by Sequencing’ approach with a novel bioinformatics pipeline delivered a high-density genetic map of the breeding population. Experimental winemaking in a 4-liter scale (micro-vinification) provided authentic wines for comprehensive sensory evaluation and chemical analysis of major and minor metabolites including aroma compounds such as monoterpenoids. Moreover, five annual repetitions at two locations allow robust modelling and an estimation of environmental impact on the phenotypic data. Genetic, metabolic, and sensory data for multiple vintages combine into a comprehensive data base for predictive modelling. The descriptive and quality score card was adapted to the large number of wine samples and the unusual broad range of wine qualities resulting from an unselected set of grapevine genotypes. Based on evaluation of all 150 genotypes we differentiated a set of best and worst wines reproducibly over years. Environmental-related differences among vintages were still present. Intensity of the descriptive attribute “floral” played a crucial role for total quality within this population and correlates with linalool and cis-rose oxide concentration of the wines in all vintages measured by SIDA-SPE-GC-MS. In addition, total concentrations of linalool enabled the discovery of several genomic regions (quantitative trait loci, QTLs) that collocate with putative genes associated with terpene biosynthesis. Multi seasonal data allowed refinement and validation of models predicting these wine quality traits. Further exploitation of the large data set will provide more insights into genomic regions related to other wine quality traits and will allow an early selection of genotypes of promising genetic quality potential or sorting out of poor candidates during grape vine breeding.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Siebert, Annemarie1, Vestner Jochen1, Röckel Franco2, Schwander Florian2, Frenzke Lena3, Wenke Torsten4, Wanke Stefan3, Töpfer Reinhard2 and Fischer Ulrich1

1Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology
2Julius Kühn-Institute (JKI), Institute for Grapevine Breeding, Geilweilerhof
4ASGEN GmbH & Co. KG

Contact the author

Keywords

Wine quality, metabolic quality potential, monoterpenes, genetic quality potential, quantitative trait loci

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Ripening potential of Touriga Nacional variety with different canopy management techniques and in different regions (Dão, Bairrada and Vinhos Verdes)

Foreseeing climatic changes, the abnormally hot and dry year of 2005 can be revealer of some varieties behavior in different climatic conditions.

Viticultural landscape: history of a challenging coexistence between grapevines and humans 

Vitis vinifera is the most grown grapevine species, which originated about 6 million years ago in the trans-caucasian area as the ancestral (wild) type v. Vinifera spp. Sylvestris. On the other hand, the human being (homo sapiens) is much younger since he originated about 300.000 years ago in north africa.

Climate change, regional adaptation necessities and impact on grape and wine composition – an integrated view on a moving target

Grapevines are cultivated on 6 out of 7 continents, roughly between latitudes 4° and 56° in the Northern Hemisphere and between 6° and 42° in the Southern Hemisphere across a large diversity of climates (oceanic, warm oceanic, transition temperate, continental, cold continental, Mediterranean, subtropical, attenuated tropical, and arid climates).

Electrochemical diversity of italian white wines

Analysis of phenolic compounds typically involve spectrophotometric methods as well as liquid chromatography combined with DAD, fluorimetric, or MS detection. However, the complexity of wine phenolic composition generated, in recent years, attention towards other analytical approaches, including those allowing rapid and inexpensive operations. Voltametric AIM Oxidation of white wine phenolics occurs at different stages during winemaking and storage and can have important implications for wine sensory quality. Phenolic compounds, in particular those with a ortho-diphenol moiety, are main target of oxidation in wine. Strategies for the methods are particularly suited for the analysis of oxidizable compounds such as phenolics. The redox-active species can be oxidized and reduced at the electrode, therefore, applications of electrochemistry have been developed both to quantify such species, and to probe wine maturation processes.3 The project on the diversity of Italian wines aims at collecting and analysing large-scale compositional dataset related to Italian white wines.

Étude intégrée et allégée des terroirs viticoles en Anjou: caractérisation et zonage de l’unité terroir de base, en relation avec une enquête parcellaire

The terroir concept is presented as the basis of the A.O.C system, in the french vineyards. The “Anjou terroirs” programme aims at bringing the necessary scientific basisfor a rational and reasoned exploitation of the terroir. lt must lead to finalizing a lighter, more relevant integrated method of characterisation wich could be generally applied.