IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

Abstract

New pathogen resistant varieties allow an efficient and greatly reduced use of fungicides. These new varieties promise, therefore, an enormous potential to reach the European Green Deal aim of a 50% reduction of pesticides in EU agriculture by 2030. The selection process, and particularly quality evaluation of the wines produced, are a bottleneck slowing down the breeding of new pathogen resistant grapevine varieties. Our major aim is therefore the development of predictive models for wine quality traits. Their implementation in the selection process would considerably increase the efficacy of grapevine breeding.The centrepiece of our study is a segregating white wine F1-population of ‘Calardis Musqué’ and ‘Villard Blanc’ consisting of 150 genotypes with 13 plants per genotype at two locations. A ‘Genotyping by Sequencing’ approach with a novel bioinformatics pipeline delivered a high-density genetic map of the breeding population. Experimental winemaking in a 4-liter scale (micro-vinification) provided authentic wines for comprehensive sensory evaluation and chemical analysis of major and minor metabolites including aroma compounds such as monoterpenoids. Moreover, five annual repetitions at two locations allow robust modelling and an estimation of environmental impact on the phenotypic data. Genetic, metabolic, and sensory data for multiple vintages combine into a comprehensive data base for predictive modelling. The descriptive and quality score card was adapted to the large number of wine samples and the unusual broad range of wine qualities resulting from an unselected set of grapevine genotypes. Based on evaluation of all 150 genotypes we differentiated a set of best and worst wines reproducibly over years. Environmental-related differences among vintages were still present. Intensity of the descriptive attribute “floral” played a crucial role for total quality within this population and correlates with linalool and cis-rose oxide concentration of the wines in all vintages measured by SIDA-SPE-GC-MS. In addition, total concentrations of linalool enabled the discovery of several genomic regions (quantitative trait loci, QTLs) that collocate with putative genes associated with terpene biosynthesis. Multi seasonal data allowed refinement and validation of models predicting these wine quality traits. Further exploitation of the large data set will provide more insights into genomic regions related to other wine quality traits and will allow an early selection of genotypes of promising genetic quality potential or sorting out of poor candidates during grape vine breeding.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Siebert, Annemarie1, Vestner Jochen1, Röckel Franco2, Schwander Florian2, Frenzke Lena3, Wenke Torsten4, Wanke Stefan3, Töpfer Reinhard2 and Fischer Ulrich1

1Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology
2Julius Kühn-Institute (JKI), Institute for Grapevine Breeding, Geilweilerhof
4ASGEN GmbH & Co. KG

Contact the author

Keywords

Wine quality, metabolic quality potential, monoterpenes, genetic quality potential, quantitative trait loci

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Research on the origin and the side effects of chitosan stabilizing properties in wine

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species.

Strategies for sample preparation and data handling in GC-MS wine applications

It is often said that wine is a complex matrix and the chemical analysis of wine with the thousands of compounds detected and often measured is proof. New technologies can assist not only in separating and identifying wine compounds, but also in providing information about the sample as a whole. Information-rich techniques can offer a fingerprint of a sample (untargeted analysis), a comprehensive view of its chemical composition. Applying statistical analysis directly to the raw data can significantly reduce the number of compounds to be identified to the ones relevant to a particular scientific question. More data can equal more information, but also more noise for the subsequent statistical handling.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.

Analytical and Chemometric Investigation of Phenolic Content of South African Red Wines

Phenolic compounds have been the focus of a lot of research in recent years for their important contribution to sensory characteristics of wine, their beneficial health effects, as well as the possibility they offer of characterising wines. In this contribution, a method is developed that allows the direct injection of wine samples followed by liquid

Wines produces without SO2 addition: which impact on their colour? An approach at the global and pigments levels

Since the 18th century, sulfur dioxide (SO2) is used in winemaking. Added at different steps, its antimicrobial but also antioxidasic and antioxidant properties are very helpful for winemakers. Nevertheless sulfur dioxide has a real potential health impact, particularly for sensitive consumers often highlighted by hygienists. Nowadays, a serious trend for “natural” wines (i.e. produced without any additives), as described by their producers, could be observed on the French market what match with a proliferation of wines elaborated without any sulfite addition.