IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

Abstract

New pathogen resistant varieties allow an efficient and greatly reduced use of fungicides. These new varieties promise, therefore, an enormous potential to reach the European Green Deal aim of a 50% reduction of pesticides in EU agriculture by 2030. The selection process, and particularly quality evaluation of the wines produced, are a bottleneck slowing down the breeding of new pathogen resistant grapevine varieties. Our major aim is therefore the development of predictive models for wine quality traits. Their implementation in the selection process would considerably increase the efficacy of grapevine breeding.The centrepiece of our study is a segregating white wine F1-population of ‘Calardis Musqué’ and ‘Villard Blanc’ consisting of 150 genotypes with 13 plants per genotype at two locations. A ‘Genotyping by Sequencing’ approach with a novel bioinformatics pipeline delivered a high-density genetic map of the breeding population. Experimental winemaking in a 4-liter scale (micro-vinification) provided authentic wines for comprehensive sensory evaluation and chemical analysis of major and minor metabolites including aroma compounds such as monoterpenoids. Moreover, five annual repetitions at two locations allow robust modelling and an estimation of environmental impact on the phenotypic data. Genetic, metabolic, and sensory data for multiple vintages combine into a comprehensive data base for predictive modelling. The descriptive and quality score card was adapted to the large number of wine samples and the unusual broad range of wine qualities resulting from an unselected set of grapevine genotypes. Based on evaluation of all 150 genotypes we differentiated a set of best and worst wines reproducibly over years. Environmental-related differences among vintages were still present. Intensity of the descriptive attribute “floral” played a crucial role for total quality within this population and correlates with linalool and cis-rose oxide concentration of the wines in all vintages measured by SIDA-SPE-GC-MS. In addition, total concentrations of linalool enabled the discovery of several genomic regions (quantitative trait loci, QTLs) that collocate with putative genes associated with terpene biosynthesis. Multi seasonal data allowed refinement and validation of models predicting these wine quality traits. Further exploitation of the large data set will provide more insights into genomic regions related to other wine quality traits and will allow an early selection of genotypes of promising genetic quality potential or sorting out of poor candidates during grape vine breeding.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Siebert, Annemarie1, Vestner Jochen1, Röckel Franco2, Schwander Florian2, Frenzke Lena3, Wenke Torsten4, Wanke Stefan3, Töpfer Reinhard2 and Fischer Ulrich1

1Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology
2Julius Kühn-Institute (JKI), Institute for Grapevine Breeding, Geilweilerhof
4ASGEN GmbH & Co. KG

Contact the author

Keywords

Wine quality, metabolic quality potential, monoterpenes, genetic quality potential, quantitative trait loci

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Use of artificial intelligence for the prediction of microbial diseases of grapevine and optimisation of fungicide application

Plasmopara viticola, the causal agent of downy mildew (DM), and Uncinula necator, the causal agent of powdery mildew (PM), are two of the main phytopathogenic microorganisms causing major economic losses in the primary sector, especially in the wine sector, by wilting bunches and leaves with a consequent decrease in the photosynthetic rate of the plant and in the annual yield. Currently, the most widespread methods for planning spraying are based on the 3-10 rule, which states that the first application should take place when: (i) the air temperature is greater than 10°C; (ii) shoots are equal or greater than 10 cm; and (iii) a minimum of 10 mm rainfall within 24–48 hours has occurred, or at the beginning of the bud break with periodic applications according to the manufacturer’s instructions.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

Enhancing grapevine transformation and regeneration: A novel approach using developmental regulators and BeYDV-mediated expression

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering crispr/cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate.

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF).

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.