IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

Abstract

New pathogen resistant varieties allow an efficient and greatly reduced use of fungicides. These new varieties promise, therefore, an enormous potential to reach the European Green Deal aim of a 50% reduction of pesticides in EU agriculture by 2030. The selection process, and particularly quality evaluation of the wines produced, are a bottleneck slowing down the breeding of new pathogen resistant grapevine varieties. Our major aim is therefore the development of predictive models for wine quality traits. Their implementation in the selection process would considerably increase the efficacy of grapevine breeding.The centrepiece of our study is a segregating white wine F1-population of ‘Calardis Musqué’ and ‘Villard Blanc’ consisting of 150 genotypes with 13 plants per genotype at two locations. A ‘Genotyping by Sequencing’ approach with a novel bioinformatics pipeline delivered a high-density genetic map of the breeding population. Experimental winemaking in a 4-liter scale (micro-vinification) provided authentic wines for comprehensive sensory evaluation and chemical analysis of major and minor metabolites including aroma compounds such as monoterpenoids. Moreover, five annual repetitions at two locations allow robust modelling and an estimation of environmental impact on the phenotypic data. Genetic, metabolic, and sensory data for multiple vintages combine into a comprehensive data base for predictive modelling. The descriptive and quality score card was adapted to the large number of wine samples and the unusual broad range of wine qualities resulting from an unselected set of grapevine genotypes. Based on evaluation of all 150 genotypes we differentiated a set of best and worst wines reproducibly over years. Environmental-related differences among vintages were still present. Intensity of the descriptive attribute “floral” played a crucial role for total quality within this population and correlates with linalool and cis-rose oxide concentration of the wines in all vintages measured by SIDA-SPE-GC-MS. In addition, total concentrations of linalool enabled the discovery of several genomic regions (quantitative trait loci, QTLs) that collocate with putative genes associated with terpene biosynthesis. Multi seasonal data allowed refinement and validation of models predicting these wine quality traits. Further exploitation of the large data set will provide more insights into genomic regions related to other wine quality traits and will allow an early selection of genotypes of promising genetic quality potential or sorting out of poor candidates during grape vine breeding.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Siebert, Annemarie1, Vestner Jochen1, Röckel Franco2, Schwander Florian2, Frenzke Lena3, Wenke Torsten4, Wanke Stefan3, Töpfer Reinhard2 and Fischer Ulrich1

1Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology
2Julius Kühn-Institute (JKI), Institute for Grapevine Breeding, Geilweilerhof
4ASGEN GmbH & Co. KG

Contact the author

Keywords

Wine quality, metabolic quality potential, monoterpenes, genetic quality potential, quantitative trait loci

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Contribution of soil for tipifiyng wines in four geographical indications at Serra Gaúcha, Brazil

Brazil has a recent history on geographical indications and product regulation for high quality wines. The first geographic indication implemented was the Vale dos Vinhedos Indication of Procedence (

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

According to the Protected Designation of Origin (PDO), Cava is protected in the quality sparkling wines made by the traditional Champenoise method were the wine realize a second fermentation inside the own bottle1. Geographical and human peculiarities of each bottle are the main way for the final quality2. The aim of this study is to find correlations and which target compounds are the most representative of the quality of two different grape varieties, Pinot Noir and Xarel·lo. The quality of these two types of grapes is being studied for each variety by a previous classification of the vineyard made by the company who provided the samples (qualities A,B,C,D, being A the better one and D the worst one). The target compounds studied are organic acids and polyphenols. The methodology for the determination of organic acids is HPLC-UV/vis and for some of them the enzymatic methodology.

Grapevine productivity modelling in the Portuguese Douro Region

In Portugal, and particularly in the Demarcated Region of Douro (DDR), wine production has a great tradition, producing the unique and worldwide famous Port wine as well as other remarkably good table wines. In this study the impact of projected climate change to wine production is analysed for the DDR. A statistical grapevine yield model (GYM) is developed using climate parameters as predictors.

Review of the delimited zone of the AOC Saint-Joseph

L’appellation d’origine contrôlée repose sur une définition précise de l’aire de production du raisin. Cette délimitation définie par l’Institut National des Appellations d’Origine est proposée par des experts choisis pour leurs compétences dans le domaine de la connaissance de la relation terroir – vins, après avis du syndicat de défense de chaque AOC.