IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Identification and characterization of polyphenols in fining precipitate

Identification and characterization of polyphenols in fining precipitate

Abstract1

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP (polyvinyl polypyrrolidone) or natural origin like bentonite.
The aim of this study was better understand colloidals phenomenons involved in fining process and determine how much polyphenols content and composition is impact in the finning. The wine used for fining experimentations were young (few mouth after the end of malolactic fermentation) from Merlot and Cabernet Sauvignon grape varieties. Different type and composition of fining agent were used during the investigation on each wine. Some of them were based on animal proteins, vegetal proteins, PVPP or bentonite alone while some were a mix of different type for example a mix with PVPP and vegetal proteins, PVPP and animal protein, and a mix with PVPP, vegetal proteins and bentonite. On the wine before and after fining, monomeric and total anthocyanins, monomeric, dimeric and total tannins, mDP (mean degree of polymerization), flavonol and phenolic acids content were measured. However in order to determine more precisely the content and composition of polyphenol lost during fining, a new strategy have been develop based on the re-solubilisation of the fining precipitate using an organic solvent. 

For these experiments, this new method highlight some drastic differences between fining agents. Indeed, depending of the fining agent the amount and the composition of the polyphenols present in the fining precipitate change. For example, some fining agent do not remove anthocyanins while some other precipitate mainly the p-coumarolylated anthocyanins. Moreover, important differences are also observed for condensed tannins according to the nature of the fining agent. Indeed, fining agent without PVPP do not have the ability to precipitate monomeric or dimeric condensed tannins. Similarly, according to the used fining agent the mDP of the precipitated condensed tannin change. Some fining agent are more selective of oligomeric tannins while some has tendency to precipitate tannins with higher mDP.

This new methodology allow a more precise and clear identification of the polyphenol precipitate by fining agent and will allow a better understanding of the impact of fining onorganoleptic properties of wine. Similarly, a better characterization of the fining precipitate will also help a better understanding of the colloidal structure of wine.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Article

Authors

Lagarde Gauthier1, Ferreira Manon1, Vanbrabant Sandra1, Teissèdre Pierre-Louis1, Lacampagne Soizic1 and Jourdes Michael1

1UMR Œnology (OENO), UMR 1366, ISVV, Université de Bordeaux-INRAE-Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author

Keywords

fining, precipitate, re-solubilization, polyphenol, winemaking

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Application of cyclic voltammetry to the classification of enological tannins in relationship to oxygen consumption rate and botanical origin 

Enological tannins are a diversified group of winemaking products that vary in several aspects such as chemical composition, botanical origin, and production method. In consideration of their richness in phenolic compounds, one of their main application in vinification is related to their antioxidant capacity, in particular their ability to consume oxygen during red wine maturation.

Application de l’Analyse du Cycle de Vie (ACV) à un domaine viticole

Since 1980, Château de l’Éclair has belonged to SICAREX Beaujolais and has been involved in experimentation for the Beaujolais vineyards. However, it is a commercial estate with profitability and quality constraints, which means that it has to meet the growing environmental expectations of consumers. Given the number of practices claimed to be environment-friendly, it is sometimes difficult to prioritize actions.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Novel insights into Passito wines aroma typicality. Rationalizing the markers of varietal and geographical origin of Amarone DOCG

Valpolicella is a famous Italian wine-producing region (Paronetto & Dellaglio, 2011), whose main characteristic is the extensive use of the post-harvest withering technique, which takes place in naturally ventilated rooms called ‘fruttai’ (Bellincontro et al., 2016).

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.