IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Abstract

Grapes infected with grey mould due Botrytis cinerea are widespread in vineyards during certain growing conditions.  Excessive infection levels may lead to decreased yields and the formation of off flavours in wine made from infected grapes. To assist in timely vineyard management that minimises yield and quality losses, decision support tools that correlate early detection of Botrytis infection and quantification of potential off flavour development is desirable.In this study, laboratory infection of whole bunches/ single berries with Botrytis cinerea to create a range of grey mould contamination in Shiraz, Cabernet Sauvignon, Chardonnay and Semillon were undertaken. After SPME GC-MS detection of grape homogenate, 8 out of 22 volatile compounds, including 3-octanol, 3-octanone, 1,5-dimethylnapthalene and 1,5-dimethyltetralin, were identified from VIP score and selectivity ratio, and excellent predictive model of Botrytis cinerea infection levels (determined by ergosterol measurement, antigen capture and qPCR) were developed using PLS and PLS2. These compounds, with high predictive accuracy, could be considered as potential biomarkers for rapid MS techniques in early stage.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Jiang Liang1, Qiu Y.1,2, Dumlao M.1,2,3, Donald W. A.4, Steel C. C.1,2 and Schmidtke L. M.1,2,3

1School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University
2Gulbali Institute (Agriculture Water Environment), Charles Sturt University
3The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide

4School of Chemistry, Faculty of Science, University of New South Wales

Contact the author

Keywords

Grape disease, Grey mould, Botrytis cinerea, SPME GC-MS, Volatile organic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.

Late leaf removal does not consistently delay ripeningin semillon in Australia

Context and purpose of the study ‐ An advancement of grapevine phenological development has been observed worldwide in the last two decades. In South Australia this phenomenon is even more accentuated since grapevine is often grown in a hot climate. The main consequences are earlier harvests at higher sugar levels which also result in more alcoholic wines. These are deemed undesirable for the Australian wine industry with consumer preferences shifting towards lower alcohol wines. Vineyard practices can be implemented to control and delay ripening. Amongst them, apical late leaf removal has been successfully applied in Europe to delay ripening by up to two weeks in Sangiovese, Aglianico and Riesling. In those studies, no negative effects were observed on grape colour, phenolics and on the carbohydrate storage capacity of the vines. To date, this technique has not been studied in Australia. In this study late leaf removal, apical to the bunch zone was applied to the variety Semillon for four seasons and compared to an untreated control.

Influence of pre-harvest elicitors treatment during ripening period on phenolic composition in Monastrell grapes

Phenolic compounds are very importants in crop plants, which is why there have been the subject of a large number of studies

Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Climate has a predominant role on growth and development of grapevines. Therefore, climate change represents an important challenge to the winemaking sector.

Utilisation de données historiques pour caractériser le millésime en cours

Cet article propose la formalisation d’un modèle paramétrique pour représenter l’accumulation des sucres dans les baies de raisin durant la maturation. Le test de ce modèle sur des jeux de données réels a permis de valider l’approche proposée. Une seconde partie est axée sur l’adaptation de la méthode pour permettre la simulation du comportement du millésime en cours dès les premiers relevés de maturité. Ce travail possède de multiples applications dans le domaine de l’aide à la décision.