IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Abstract

Grapes infected with grey mould due Botrytis cinerea are widespread in vineyards during certain growing conditions.  Excessive infection levels may lead to decreased yields and the formation of off flavours in wine made from infected grapes. To assist in timely vineyard management that minimises yield and quality losses, decision support tools that correlate early detection of Botrytis infection and quantification of potential off flavour development is desirable.In this study, laboratory infection of whole bunches/ single berries with Botrytis cinerea to create a range of grey mould contamination in Shiraz, Cabernet Sauvignon, Chardonnay and Semillon were undertaken. After SPME GC-MS detection of grape homogenate, 8 out of 22 volatile compounds, including 3-octanol, 3-octanone, 1,5-dimethylnapthalene and 1,5-dimethyltetralin, were identified from VIP score and selectivity ratio, and excellent predictive model of Botrytis cinerea infection levels (determined by ergosterol measurement, antigen capture and qPCR) were developed using PLS and PLS2. These compounds, with high predictive accuracy, could be considered as potential biomarkers for rapid MS techniques in early stage.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Jiang Liang1, Qiu Y.1,2, Dumlao M.1,2,3, Donald W. A.4, Steel C. C.1,2 and Schmidtke L. M.1,2,3

1School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University
2Gulbali Institute (Agriculture Water Environment), Charles Sturt University
3The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide

4School of Chemistry, Faculty of Science, University of New South Wales

Contact the author

Keywords

Grape disease, Grey mould, Botrytis cinerea, SPME GC-MS, Volatile organic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

From the current probabilistic approach to a deterministic production process, a clear step towards digital transformation in the wine sector

Currently, to consistently ensure the maintenance of a wine-style while benefiting from the utmost rigor made possible by the winemaking process, the composition of the wine blend is made using sensory control. This is performed after the wine is made with no real possibility of deterministic intervention.

Water dynamics of Touriga-Nacional grapevines trained in cordon and guyot systems under Mediterranean climate conditions

Aims: The aims of the present study were to (1) evaluate the water dynamics of Touriga-Nacional grapevines trained to spur pruned cordon and Guyot systems and (2) assess the effect of variable water availability in a commercial vineyard located in the Demarcated Douro Region (DDR), Portugal.

Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

In viticulture sector to find new tools for pest management has become an urgent necessity. Hence, grapevines cultivation has high production rate demand and to meet the intensive market request, a massive use of pesticides is often required. In addition to the environmental problems associated with large use of chemicals, there is an increasing number of consumers which are asking for

Climate variability and its effects in the Penedès vineyard region (NE Spain)

This study present a detailed analysis of the rainfall and temperature changes in the Penedès region in the period 1995/ 96 – 2008/09, in comparison with the trends observed during the last 50 years, and its implications on phenology and yield.

Activation of retrotransposition in grapevine

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci.