IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Anthocyanin composition and sensory properties of wines from Portuguese and international varieties cultivated in a hot and dry region of Portugal

Anthocyanin composition and sensory properties of wines from Portuguese and international varieties cultivated in a hot and dry region of Portugal

Abstract

The study of anthocyanins in wines and grapes has been the subject of numerous research works over the years due to their important role in enology regarding their contribution to wine sensory properties. Anthocyanins confer colour to red wine and contribute to other organoleptic characteristics due to interactions with other polyphenols, proteins and polysaccharides. This group of compounds lends itself to varietal characterization; they are substances that, as secondary metabolites, are directly related to the genetic component. The environmental characteristics, namely the temperature and the water status under which the development of the berries takes place have a great influence on the quantity and composition of these compounds.The objective of this work was to study varietal differences in anthocyanins composition and the relation with some sensory properties, within selected international and Portuguese grape varieties cultivated in Alentejo region, one of Portugal largest quality wine producing regions but very hot and dry and extremely susceptible to climate change. The grape varieties were selected based on previous studies on their ecophysiological response and adaptability to severe environmental conditions and heatwaves. The grape varieties studied were 14 namely, Petit Verdot, Marselan, Merlot, Touriga Franca, Syrah, Vinhão, Bobal, Preto Martinho, Corropio, Trincadeira, Tinta Caiada, Alfrocheiro, Alicante Bouschet e Touriga Nacional. The varietal wines samples were evaluated by sensory analysis using quantitative descriptive analysis and the anthocyanins analysis by high-performance liquid chromatography-diode array (HPLC-DAD).The principal component analysis (PCA) results based on the correlation matrix between different anthocyanin groups according to acylation types, (nonacylated, acetate derivatives, coumarate derivatives and caffeoate derivatives) and total anthocyanins, showed that the first two principal components explained 98.24% of total variance. The PCA  show the discrimination of Touriga Nacional, Syrah, and Vinhão wines, that have high positive scores in PC1 strongly associated with nonacylated and total concentration of anthocyanins, related to their higher concentration and richer composition of anthocyanins, in the other hand wines from the varieties Preto Martinho, Bobal e Corropio are located on the opposite side of PC1, and they presented lower anthocyanins concentration. These results are in agreement with sensory analysis regarding specific sensory attributes such as astringency and colour quality.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Martins Patrícia1, Caldeira Ilda1, Baoshan Sun2, Damásio Miguel1, Egipto Ricardo1 and Silvestre José1

1Instituto Nacional de Investigação Agrária e Veterinária, IP
2Instituto Nacional de Investigação Agrária e Veterinária, IP, Shenyang Pharmaceutical University

Contact the author

Keywords

wine, anthocyanins, climate change, sensory profile, grape varieties

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

PPhloem transport of assimilates provides the materials needed for the growth and development of reproductive structures, storage and developing organs, and has long been recognized as a major determinant in crop yield.

Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Bushfires are a common occurrence throughout Australia and their incidence is predicted to both rise and increase in severity due to climate change. Many of these bushfires occur in areas close to wine regions, which receive different levels of exposure to smoke. Wine produced from smoke-affected grapes are characterised by unpalatable smoky aromas such as “burning rubber”, “smoked meats” and “burnt wood”. These smoke tainted wines are unprofitable and result in significant financial losses for winegrowers.

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.