IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

Abstract

g-Nonalactone has been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors. The exact route of g-nonalactone biosynthesis in wine has not been fully elucidated; however, precursors including 4-oxononanoic acid, linoleic acid, 13-hydroxyoctadeca-9,11-dienoic acid (13-HODE) and 9-hydroxyoctadeca-10,12-dienoic acid (9-HODE) have been identified in incubation experiments. Wines produced from grapes infected with “noble rot” caused by Botrytis cinerea fungus generally show higher concentrations of g-nonalactone compared to non-botrytised white wines, but the relative contribution of potential formation pathways has not been elucidated. To assess the effect of linoleic acid on the production of g-nonalactone in wine, fermentations with and without added linoleic acid were carried out in synthetic grape must (SGM) at 28 °C using commercial Saccharomyces cerevisiae EC1118. Prior to g-nonalactone quantitation in the finished wines and in a subset of six Australian and New Zealand commercial wines, several routes for the synthesis of a deuterated analogue of g-nonalactone were attempted, before the deuterated d6-analogue of g-nonalactone from its non-deuterated analogue was produced successfully. Subsequently, attempts were made to utilise the d6-analogue as an internal standard for the measurement of g-nonalactone using gas chromatography-mass spectrometry. However, the synthetic deuterated g-nonalactone analogue proved to be an inappropriate internal standard for this purpose, due to incomplete incorporation of deuterium atoms. 2-Octanol was instead used as a surrogate internal standard. g-Nonalactone was successfully identified (above the limit of detection, 4.12g/L) in two commercial New Zealand botrytised wine samples, and one fermentation sample to which linoleic acid (132 mg/L) had been added. This suggests a possible link between the effect of Botrytis cinerea and/or linoleic acid, and increased levels of g-nonalactone in wine. The promising results in these preliminary experiments have led to an improved internal standard being sought out for the quantification of g-nonalactone in wine, and further investigation of its biosynthesis. A 13C4-labelled g-nonalactone analogue was successfully synthesized based on a previous method, with four 13C atoms being introduced into the molecule via two Wittig olefination steps. This standard will be used for a much larger survey of approximately 40 botrytised and non-botrytised New Zealand wines, in addition to further fermentation experiments assessing the effects of the addition of a wider range of putative precursors.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Miller Gillean1, Fedrizzi Bruno1, Barker David1, Pilkington Lisa1 and Deed Rebecca1

1The University of Auckland, School of Chemical Sciences

Contact the author

Keywords

Lactones, Botrytis, White wine, New Zealand, GC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Sensory characterisation and consumer perspectives of Australian Cabernet Sauvignon wine typicity

Aim: To identify the sensory attributes responsible for the typicity of Cabernet Sauvignon wines from three Australian Geographical Indications (GIs) and to explore consumer purchase behaviour and preference with regard to regional wines.

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.

The sensory profile of astringency: application on Sangiovese wines

One of the main sensory characteristics of red wine is astringency, which can be defined as drying, puckering and roughing of the oral cavity after the exposure to tannin-rich wines. Tannins are the main responsible for the intensity of the sensation as well for the qualitative aspects of astringency. However, the total intensity of the sensation is not sufficient to fully characterize red wine astringency. Thirty-three different subqualities (Gawel et al. 2001) had been generated to describe the complexity of this multi perceptual phenomenon, which includes both tastes, tactile, and flavor sensations. So, how to feel tannins during tasting? In this study, we used a sensory method that combine the training for astringency subqualities with touch-standards and the CATA questions, usually applied in consumer science, to evaluate the astringency subqualities of different typologies of Sangiovese: commercial and experimental wines. Sangiovese wine represents a good model for the study of astringency because it is generally characterized by a high content of low and high molecular weight proantocyanidins. Commercial wines differed for percentage of Sangiovese (80-100 %) grapes used in winemaking and for designation (Toscana TS, Chianti Classico CH, Chianti Riserva CR, Morellino di Scansano MS). The astringency profile of wines changed as the percentage of Sangiovese increased. Positive subqualities as velvet, soft, mouthcoat, and rich highly characterized the Sangiovese wine belonging to TS and CR designations. Moreover, the astringency subqualities related to blending or wood aging, represented the drivers of quality of commercial Sangiovese wines.

Influence de la nutrition potassique sur le manque d’acidité des vins issus du cépage Negrette

A worrying drop in the acidity of wines has been observed in many wine regions, such as Bordeaux (Merlot), Burgundy (Pinot Noir), Côtes-du-Rhône (Grenache) or Rioja (Tempranillo). This lack of acidity is particularly marked in the Midi-Pyrenean vineyards of the Côtes du Frontonnais (Tournier, 1993). However, the acidity of a wine is one of the main factors of its quality, in fact, a low acidity combined with an insufficient tannic structure leads to rapid oxidation of wines and makes them age prematurely.