IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

Abstract

g-Nonalactone has been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors. The exact route of g-nonalactone biosynthesis in wine has not been fully elucidated; however, precursors including 4-oxononanoic acid, linoleic acid, 13-hydroxyoctadeca-9,11-dienoic acid (13-HODE) and 9-hydroxyoctadeca-10,12-dienoic acid (9-HODE) have been identified in incubation experiments. Wines produced from grapes infected with “noble rot” caused by Botrytis cinerea fungus generally show higher concentrations of g-nonalactone compared to non-botrytised white wines, but the relative contribution of potential formation pathways has not been elucidated. To assess the effect of linoleic acid on the production of g-nonalactone in wine, fermentations with and without added linoleic acid were carried out in synthetic grape must (SGM) at 28 °C using commercial Saccharomyces cerevisiae EC1118. Prior to g-nonalactone quantitation in the finished wines and in a subset of six Australian and New Zealand commercial wines, several routes for the synthesis of a deuterated analogue of g-nonalactone were attempted, before the deuterated d6-analogue of g-nonalactone from its non-deuterated analogue was produced successfully. Subsequently, attempts were made to utilise the d6-analogue as an internal standard for the measurement of g-nonalactone using gas chromatography-mass spectrometry. However, the synthetic deuterated g-nonalactone analogue proved to be an inappropriate internal standard for this purpose, due to incomplete incorporation of deuterium atoms. 2-Octanol was instead used as a surrogate internal standard. g-Nonalactone was successfully identified (above the limit of detection, 4.12g/L) in two commercial New Zealand botrytised wine samples, and one fermentation sample to which linoleic acid (132 mg/L) had been added. This suggests a possible link between the effect of Botrytis cinerea and/or linoleic acid, and increased levels of g-nonalactone in wine. The promising results in these preliminary experiments have led to an improved internal standard being sought out for the quantification of g-nonalactone in wine, and further investigation of its biosynthesis. A 13C4-labelled g-nonalactone analogue was successfully synthesized based on a previous method, with four 13C atoms being introduced into the molecule via two Wittig olefination steps. This standard will be used for a much larger survey of approximately 40 botrytised and non-botrytised New Zealand wines, in addition to further fermentation experiments assessing the effects of the addition of a wider range of putative precursors.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Miller Gillean1, Fedrizzi Bruno1, Barker David1, Pilkington Lisa1 and Deed Rebecca1

1The University of Auckland, School of Chemical Sciences

Contact the author

Keywords

Lactones, Botrytis, White wine, New Zealand, GC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Vinification by carbonic maceration (CM) is based in the anaerobic fermentative metabolism also called intracellular fermentation (IF).

Les AOC : un frein ou un moteur à l’innovation ? Retour sur l’histoire économique, scientifique, sociale et technique des vins d’appellation au XXe siècle en France

At a time when the world’s winegrowing industry is having to adapt to a number of challenges, winegrowers are wondering about the consequent changes they will have to make (grape varieties, changes in vineyard and cellar techniques). For winegrowers and consumers alike, there is also the question of how these changes will affect the taste of their wines. This research, based on the study of numerous sources and archives from the 20th century, some of which have never been published before, aims to show that, in the recent past, the winegrowing world has shown incredible resilience in the face of crises, and that the taste and perception of fine wines has changed considerably in 100 years.

Within-vineyard spatial variation impacts methoxypyrazine accumulation in the rachis of Cabernet-Sauvignon

To investigate the impact of spatial variation in vine vigour on the accumulation of methoxypyrazines in the rachis of Cabernet-Sauvignon. Cabernet-Sauvignon rachis has been shown to contain significantly higher concentrations

Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Tannins are very important for grape and wine quality, since they participate in several organoleptic wine characteristics such as astringency perception, bitterness, and the colour stability. The compositions in tannins in grapes and wines differs between seeds and skins. Tannin seeds contain a higher concentration of tannins than skin and has been associated with a coarse and more tannic notes in wines, by contrast, tannin skin are related to a greater softness in the wines.

Comprehensive exploration of wine aroma-related compounds as promoted by alternative vinification procedures in case of Zelen (Vitis vinifera L.) grapes processing

Not only vintner’s decisions in the vineyard, but also winemaker’s choices of technology approaches in the cellar play a significant role in the final wine style and quality. Whereas traditional technologies within chosen terroir are quite well explored and thus somehow predictable, there is no proper knowledge available on possible outcomes in case of implementing novel, alternative winemaking strategies. To reveal their effects on wine aroma compounds and sensory characteristics, two alternative strategies
(cryoextraction or addition of whole grape berries during last stages of fermentation) were compared to classical Vipava valley winemaking approach as normally used for an autochthonous variety Zelen. After separate vinification and bottling, all the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS and were then also sensorialy evaluated by pre-trained panel.