IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Additives od aids? Evaluation of aroma compounds release from oenological tannins of different botanical origins.

Additives od aids? Evaluation of aroma compounds release from oenological tannins of different botanical origins.

Abstract

Oenological tannins are products extracted from various botanical sources, such as mimosa, acacia, oak gall, quebracho, chestnut and tara. The polyphenolic component is obtained through a solid-liquid extraction also using specific solvents, then removed by evaporation or freeze-drying. Tannins are employed in two phases of winemaking, during the pre-fermentative phase or during fining with different purposes such as modulate antioxidant activity, colour stabilization, bacteriostatic activity, protein stabilization and modulation of sensory properties. To date, the current regulatory framework is not very clear. In fact, the Codex Alimentarius classifies commercial tannins as “food additives” but also as “processing aids”. The main distinction is that “additives” have a technological function in the final food, whereas “processing aids” do not. In this sense, oenological tannins, despite the technological treatments, could contain aromatic compounds of the botanical species they belong to and release them to the wine. The aim of this study was the evaluation of the release of aroma compounds by oenological tannins of different botanical origins. Twenty-six tannins from two different producers were extracted for forty-eight hours with a hydroalcoholic solution (15% ethanol) on an orbital shaker (70 rpm). Free volatile compounds and glycosidic precursors have been analysed thanks to SPE- and SPME-GC-MS techniques. All volatile compounds were found to be in wide ranges. Terpenes for example ranged from 0.04 µg/L to 19.1 µg/L, with three samples above 15 µg/L. In one case, a sample was found to have a concentration of a cyclic terpene (1,8-cineole) above the odor threshold. Fair concentrations, although below the odor threshold were found for cis- and trans-linaloloxide. Benzenoids as expected showed the highest concentrations, over 1.6 mg/L but also in this case with great variations. In this case, vanillin showed high levels, above the odor threshold in several samples. Other compounds (norisoprenoids, fatty acids and alcohols) were present in traces. Most of the studied products showed low levels of aroma compounds, benzenoids apart, however in some samples, few compounds were present in high concentrations beyond the odor threshold, with the potential ability to modify the sensory profile of a wine.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Slaghenaufi Davide1, Luzzini Giovanni1 and Ugliano Maurizio1

1Department of Biotechnology, University of Verona

Contact the author

Keywords

Tannins, Botanical origins, additive, aids, aroma compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

New insights on thiol precursors catabolism by yeast during wine fermentation: identification of the N-Acetyl-L-Cysteine conjugate

Understanding the catabolism of thiol precursors is essential for understanding the revelation of varietal thiols in wine. For many years, knowledge of these precursors has been limited to the S-conjugates of glutathione, cysteine (Cys3SH) and the dipeptides g-GluCys and CysGly, without being able to explain the full origin of 3-sulfanylhexan-1-ol (3SH) in wines

Vitamins in grape must: let’s lift a corner of the veil

Although vitamins stand as major actors to yeasts prime metabolic pathways, their significance in oenology and winemaking remains rather obscure nowadays, having been mostly unexplored for several decades.

Sensory significance of aroma carry-over during bottling from aromatized wine-based beverages into regular wine

In 2020 one out of  eight wine bottles were filled with a flavoured wine-based beverage.

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.