IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Additives od aids? Evaluation of aroma compounds release from oenological tannins of different botanical origins.

Additives od aids? Evaluation of aroma compounds release from oenological tannins of different botanical origins.

Abstract

Oenological tannins are products extracted from various botanical sources, such as mimosa, acacia, oak gall, quebracho, chestnut and tara. The polyphenolic component is obtained through a solid-liquid extraction also using specific solvents, then removed by evaporation or freeze-drying. Tannins are employed in two phases of winemaking, during the pre-fermentative phase or during fining with different purposes such as modulate antioxidant activity, colour stabilization, bacteriostatic activity, protein stabilization and modulation of sensory properties. To date, the current regulatory framework is not very clear. In fact, the Codex Alimentarius classifies commercial tannins as “food additives” but also as “processing aids”. The main distinction is that “additives” have a technological function in the final food, whereas “processing aids” do not. In this sense, oenological tannins, despite the technological treatments, could contain aromatic compounds of the botanical species they belong to and release them to the wine. The aim of this study was the evaluation of the release of aroma compounds by oenological tannins of different botanical origins. Twenty-six tannins from two different producers were extracted for forty-eight hours with a hydroalcoholic solution (15% ethanol) on an orbital shaker (70 rpm). Free volatile compounds and glycosidic precursors have been analysed thanks to SPE- and SPME-GC-MS techniques. All volatile compounds were found to be in wide ranges. Terpenes for example ranged from 0.04 µg/L to 19.1 µg/L, with three samples above 15 µg/L. In one case, a sample was found to have a concentration of a cyclic terpene (1,8-cineole) above the odor threshold. Fair concentrations, although below the odor threshold were found for cis- and trans-linaloloxide. Benzenoids as expected showed the highest concentrations, over 1.6 mg/L but also in this case with great variations. In this case, vanillin showed high levels, above the odor threshold in several samples. Other compounds (norisoprenoids, fatty acids and alcohols) were present in traces. Most of the studied products showed low levels of aroma compounds, benzenoids apart, however in some samples, few compounds were present in high concentrations beyond the odor threshold, with the potential ability to modify the sensory profile of a wine.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Slaghenaufi Davide1, Luzzini Giovanni1 and Ugliano Maurizio1

1Department of Biotechnology, University of Verona

Contact the author

Keywords

Tannins, Botanical origins, additive, aids, aroma compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring the physico-chemical modification of grape seed extracts to improve their clarifying effect in red wine

During winemaking, some byproducts are obtained, such as grape pomace, which represent 13% of winery byproducts.

Sélection génétique des variétés originelles d’Arménie, berceau de la viticulture mondiale

Armenia, a small country in the South of the Caucasus, has been rediscovering its wine-growing past since the discovery in 2007 of archaeological wine-growing remains dating back around 8,000 years. They are among the oldest in the world. Despite a great diversity of grape varieties, Armenian winegrowers did not have sufficiently organized genetic collections to produce plants and satisfy the growing demand for planting.

Enological, economical, social and viticulture ”terroir” units as fundamental elements of mosaic of “big” zoning

Nous savons tous très bien qu’on a assisté au cours de ces dix dernières années à une éclosion soudaine de recherches sur le zonage viti-vinicole qui, à partir par exemple du modèle du concept de “terroir”, se sont de plus en plus enrichies en passant aux “Unités ou Systèmes de Transformation” (UTTE) et “Valorisation” (UTCE) pour terminer avec les “Systèmes productifs globaux du Territoire” (UTB) comprenant en filière les aspects existentiels (UTBES), sociaux (UTBSO) et économiques (UTBEC) hypothisés dans le “GRANDE ZONAZIONE: Grand zonage” (MORLAT R., 1996, CARBONNEAU A., 1996, TOUZARD J.M. 1998, CARBONNEAU A., CARGNELLO G., 1996, 1998, CARGNELLO G., 1994, 1995, 1996, 1998, 1999, 2001, -MILOTIC A., CARGNELLO G., PERSURIC G., 1999, PERSURIC G., STAYER M., CARGNELLO G., 2000, MILOTIC A., OPLANIC M., CARGNELLO G., PERSURIC G., 2000).

Mitigating the effects of climate change on berry composition by canopy management

Primary and secondary metabolites are major components of grape composition and their balances define wine typicality

Gastrointestinal digestion of wine sulphites and their effects on human gut microbiota

Sulphites are by far the most widely used additive in the wine industry. In relation to health, the interaction of sulphites with the gut microbiota has not been addressed so far. Following the consumption of wine and other sulphite-containing foods, the gastrointestinal tract and the microbiome are one of the first barriers that these compounds face in the human organism. In this study, we used a previously validated gastrointestinal digestion model (SIMGI®) [1,2] to evaluate the effect of intestinal digestion of wine sulphites on the gut microbiome.