IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Additives od aids? Evaluation of aroma compounds release from oenological tannins of different botanical origins.

Additives od aids? Evaluation of aroma compounds release from oenological tannins of different botanical origins.

Abstract

Oenological tannins are products extracted from various botanical sources, such as mimosa, acacia, oak gall, quebracho, chestnut and tara. The polyphenolic component is obtained through a solid-liquid extraction also using specific solvents, then removed by evaporation or freeze-drying. Tannins are employed in two phases of winemaking, during the pre-fermentative phase or during fining with different purposes such as modulate antioxidant activity, colour stabilization, bacteriostatic activity, protein stabilization and modulation of sensory properties. To date, the current regulatory framework is not very clear. In fact, the Codex Alimentarius classifies commercial tannins as “food additives” but also as “processing aids”. The main distinction is that “additives” have a technological function in the final food, whereas “processing aids” do not. In this sense, oenological tannins, despite the technological treatments, could contain aromatic compounds of the botanical species they belong to and release them to the wine. The aim of this study was the evaluation of the release of aroma compounds by oenological tannins of different botanical origins. Twenty-six tannins from two different producers were extracted for forty-eight hours with a hydroalcoholic solution (15% ethanol) on an orbital shaker (70 rpm). Free volatile compounds and glycosidic precursors have been analysed thanks to SPE- and SPME-GC-MS techniques. All volatile compounds were found to be in wide ranges. Terpenes for example ranged from 0.04 µg/L to 19.1 µg/L, with three samples above 15 µg/L. In one case, a sample was found to have a concentration of a cyclic terpene (1,8-cineole) above the odor threshold. Fair concentrations, although below the odor threshold were found for cis- and trans-linaloloxide. Benzenoids as expected showed the highest concentrations, over 1.6 mg/L but also in this case with great variations. In this case, vanillin showed high levels, above the odor threshold in several samples. Other compounds (norisoprenoids, fatty acids and alcohols) were present in traces. Most of the studied products showed low levels of aroma compounds, benzenoids apart, however in some samples, few compounds were present in high concentrations beyond the odor threshold, with the potential ability to modify the sensory profile of a wine.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Slaghenaufi Davide1, Luzzini Giovanni1 and Ugliano Maurizio1

1Department of Biotechnology, University of Verona

Contact the author

Keywords

Tannins, Botanical origins, additive, aids, aroma compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

Recognition of terroir in american viticultural areas

Un’ Area di Viticultura Americana, detta AVA, è una regione vinicola delimitata ed è dis­tinguibile da caratteristiche geografiche i cui confini sono stati definiti da regolamenti. Il sistema AVA rappresenta un ‘accettazione del concetto di terroir (terreno), come dimostra­no gli studi che confermano il carattere regionale dei vini AVA e dalla sviluppo di sub­denominazioni più relazionate al terreno.

Modeling the suitability of Pinot Noir in Oregon’s Willamette Valley in a changing climate

Air temperature is the key driver of grapevine phenology and a significant environmental factor impacting yield and quality for a winegrape growing region. In this study the optimal downscaled CMIP5 ensemble for computing thegrowing season average temperature (GST) viticulture climate classification index was determined to spatially compute on a decadal basis predictions of the GST climate index and the grapevine sugar ripeness (GSR) model for Pinot Noir throughout the Willamette Valley (WV) American Viticultural Area (AVA). Forecasts for average temperature and a 220 g/L target sugar concentration level were computed using daily Localized Constructed Analogs (LOCA) downscaled CMIP5 historic and Representative Concentration Pathways (RCP) future climate projections of minimum and maximum daily temperature. We explore spatiotemporal trends of the GST climate classification index and Pinot Noir specific applications of the GSR phenology model for the WV AVA. Spatiotemporal computations of the GST climate index and Pinot Noir specific applications of the GSR model enable the opportunity to explore relationships between their computed values with one intent being to provide updated GST ranges that better align with current temperature-based modeling understanding of Pinot Noir grapevine phenology and the viticultural application of LOCA CMIP5 climate projections for the WV AVA. The Pinot Noir specific applications of the GSR model or the GST index with updated bounds indicate that the percent of the WV AVA area suitable for Pinot Noir production is currently at or near its peak value in the upper 80s to lower 90s of this century.

Evaluating alternatives to cold stabilization in wineries: the use of carboximethyl cellulose, potassium polyaspartate, electrodialysis and ion exchange resins – the results after one year in the bottle

The tartaric stabilization of wines before bottling to avoid the precipitation of tartaric acid salts is an important and common step during wine production. The presence of precipitated salt crystals in bottle wines is detrimental for their quality and even a legal issue in some countries. Cold stabilization is the most common stabilization treatment. Although it has been shown to be effective, it has some significant disadvantages, mainly regarding losses of color and aromas and its high cost. Therefore, other products and methodologies are being introduced in the wineries for the replacement of this process. Some of these new techniques involve the reduction of the ions causing the insolubilization of tartaric acid while other are based in the formation of protective colloids or the inhibition of the crystallization of salts. In this study, white, rosé and red wines have been treated with carboxymethylcellulose, potassium polyaspartate and an ion exchange resin. The tartaric stability of the wines, together with the oenological, chromatic and sensory characteristics were studied after the wines had been stored during one year in the bottle. The results indicate that the use of carboxymethyl cellulose and potassium polyaspartate maintained the best the sensory and chromatic characteristics and the wine stability of the wines in comparison with an untreated control wine.

Evaluation of the composition of pomace from grapes grown in the slopes of the Popocatépetl volcano (Puebla, Mexico). Feasibility of its application for obtaining functional foods

Grape pomace is the main byproduct generated during wine production and is primarily composed of skins and seeds, which are obtained after the pressing stage [1]. This byproduct retains a significant amount of nutrients, such as fiber, phenolic compounds, unsaturated fatty acids, vitamins, and minerals.