IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Varietal thiol precursors in Trebbiano di Lugana grape and must

Varietal thiol precursors in Trebbiano di Lugana grape and must

Abstract

Trebbiano di Lugana (TdL) is a white variety of Vitis vinifera mainly cultivated in an Italian area located south near Garda lake (Verona, north of Italy). This grape cultivar, also known as “Turbiana,” is used for the production of TdL wine with recognized Protected Designation of Origin whose volatile profile was recently determined [1]. The presence of varietal thiols in TdL, namely 3-mercaptohexan-1-ol and its acetate form, conferring the tropical and citrus notes, has been documented. Winemaking strategies were also described with the purpose of protecting and maintain these desired aromas [2]. To the best of our knowledge, the varietal thiol precursors (VTPs) were not previously determined in TdL grape and must. This study aimed to quantify VTPs in both grape during the ripening and must during the pressing. Volatile C6 compounds were also measured in the must fractions.
TdL grapes were sampled during the ripening in two vineyards, differing for the content of readily assimilable nitrogen (RAN), for a total of five samplings each. The musts were produced in an industrial plan collecting the samples during the pressing for a total of nine samplings [3]. VTPs were identified and quantified in grape fractions, grape samples and must fractions by ULPC coupled High Resolution Mass Spectrometry (HRMS) after SPE of samples [4]. Volatile C6 compounds, namely trans-2-hexen-1-ol, trans-3-hexen-ol, 2-hexenal, 1-hexanol, cis-3-hexen-1-ol and cis-2-hexen-1-ol, were determined by SPME-GC/MS [5].
S-3-(hexan-1-ol)-L-glutathione (G-3SH), S-3-(hexan-1-ol)-L-cysteine (Cys-3SH) and S-3-(hexanal)-glutathione (G-3SHal) were detected in both grape and must samples. At harvest, grapes with lower RAN revealed about 3-folds lower levels of G-3SH (79.71±0.97 μg/L vs. 208.66±1.35 μg/L) and G-3SHal (4.7±0.1 mg/L vs. 13.1±0.0 mg/L), and 2-folds lower amounts of Cys-3SH (11.95±0.82 μg/L vs. 21.75±0.47 μg/L). This suggests the level of RAN in grape to affect VPT synthesis. Nonetheless, the musts obtained with the two grapes showed comparable concentrations of G-3SH (50.71±0.37 μg/L as average); Cys-3SH was found at trace levels in both musts, and little amounts of G-3SHal was detected only in the must with higher RAN (29.53±7.37 μg/L). Considering the volatile C6 compounds, trans-3-hexen-1-ol, cis-3-hexen-1-ol and cis-2-hexen-1-ol were similar in the two investigated musts; trans-2-hexen-1-ol was higher in the must with low RAN as well as 2-hexenal and 1-hexanol. No significant correlation was found between the VPTs and volatile C6 compounds in the must fractions analysed.
These data suggest RAN to impact the VPT concentrations in grape. Moreover, pressing was found to play an important role on VPTs content of musts.

References

[1] Fracassetti D., Camoni D., Montresor L., Bodon R., Limbo S. Chemical characterization and volatile profile of Trebbiano di Lugana wine: A case study. Foods 2020, 9, 956. https://doi.org/10.3390/foods9070956.
[2] Mattivi F., Fedrizzi B., Zenato A., Tiefenthaler P., Tempesta S., Perenzoni D., Cantarella P., Simeoni F., Vrhovsek U. Development of reliable analytical tools for evaluating the influence of reductive winemaking on the quality of Lugana wines. Anal. Chim. Acta 2012, 732, 194–202. https://doi.org/10.1016/j.aca.2011.11.051.
[3] Tirelli A., De Noni I., Stuknytė M., Pica V., Fracassetti D. Role of extraction procedures on the concentration of varietal thiol precursors in Grillo white grape must. Aust. J. Grape Wine Res. 2022, 28, 61-69. https://doi.org/10.1111/ajgw.12514.
[4] Fracassetti D., Stuknyté M., La Rosa C., Gabrielli M., De Noni I., Tirelli A. Thiol precursors in Catarratto Bianco Comune and Grillo grapes and effect of clarification conditions on the release of varietal thiols in wine. Aust. J. Grape Wine Res. 2018, 24, 125-133. https://doi.org/10.1111/ajgw.12311.
[5] Bosso A., Follis R., Guaita M., Motta S., Panero L., Petrozziello M. Caratterizzazione del quadro polifenolico ed aromatico di mosti di 5 diverse cultivar a bacca bianca, sottoposti a pressatura all’aria a sotto azoto. From “Territori di vini-progetti di ricerca per il settore vitivinicolo” edited by Società Consortile territori Divini A.R.L. (stampa La GRAFICA FAGGIAN S.R.L.-Campodarsego (PD). Proceedings of the conference “Territori diVini”, Treviso, 24 june 2011: 29-37.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Fracassetti Daniela1, De Noni Ivano1, Petrozziello Maurizio2, Bonello Frederica2 and Tirelli Antonio1 

1Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano
2CREA-VE Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia

Contact the author

Keywords

Grape ripening, Pressing, C6 compounds, Must

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Sustainable wine industry: supercritical fluid extraction as key technology for biorefinery enhancement

Supercritical carbon dioxide (sc-CO2) extraction is an environmentally friendly technology employed for bioactive compounds recovery from various natural sources and biomasses. The advantages of sc-co2 extraction include its selectivity, relatively mild operating conditions, which minimize the degradation of sensitive compounds, and the absence of potentially harmful organic solvents.

Drought responses in Chardonnay and Sauvignon blanc grapevine cultivars: Mechanistic insights and varietal contrasts

This study explored the responses of Chardonnay and Sauvignon blanc grapevine cultivars to water deficit across four years, uncovering their shared patterns and distinctive coping mechanisms. The research was conducted in a commercial vineyard located in Isla de Maipo, Chile. Various characterization approaches were employed including plant water potentials (), gas exchange measurements, shoot vulnerability curves, productivity assessments, and leaf cell water relations. Linear mixed models and sensitivity analyses were performed using various statistical methods to evaluate cultivar responses to water deficit. As the water deficit progressed, both cultivars displayed a parallel reduction in stomatal conductance, leaf turgor, and increased shoot embolism.

Application of organic carbon status indicators on vineyard soils: the case study of DOC Piave (Veneto region, Italy)

According to the Kyoto Protocol objectives, it’s necessary to identify alternative carbon dioxide sinks, and vineyard soils could be a significant opportunity.