IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast Assimilable Nitrogen and Sugar content.

Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast Assimilable Nitrogen and Sugar content.

Abstract

Hydroxytyrosol (HT) is well known for its potent antioxidant activity and anticarcinogenic, antimicrobial, cardioprotective and neuroprotective properties. One possible explanation to its origin in wines is the synthesis from tyrosol, which in turn is produced from the Ehrlich pathway by yeasts.  This work aims to explore the factors that could increase the final content as the initial concentration of yeast assimilable nitrogen (YAN) and sugar. Two different concentrations of YAN were proved between 210mg/L and 300 mg/L. Additionally, two different concentrations of sugar were used: 100g/L and 240 g/L.  Alcoholic fermentations in synthetic must were performed with the strain QA23. Commercial Saccharomyces cerevisiae yeasts QA23 were used, as well as a strain with a specific modification to increase the production of fusel alcohols. Experimental design includes different YAN and sugar concentrations. The analysis was performed in a Thermo Scientific liquid chromatography system consisting of a binary UHPLC Dionex Ultimate 3000RS, connected to a quadrupole orbitrap Qexactive hybrid mass spectrometer (Thermo Fisher Scientific, Bremen, Germany), which was equipped with a heated electrospray ionization probe (HESI-II). The column used was a ZORBAX SB-C18 (2.1 × 100 mm, 1.8-μm particle size) Higher concentrations of hydroxytyrosol were obtained in synthetic must with higher amount of sugar (240g/L) and lesser YAN (210mg/L). Furthermore, the modified yeast presents a higher capacity to produce HT and tyrosol. Selecting the adequate conditions of sugar and YAN can increase the HT and tyrosol content 10 times.These results might explain certain differences between HT content in wines.  

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Garcia-Parrilla Maria del Carmen1, González-Ramírez Marina1, Guillamón José M.2, Valero Eva3, Cerezo Ana B.1, Troncoso Ana M.1 and Garcia-Parrilla M. Carmen1

1Universidad de Sevilla
2Instituto de Agroquímica y Tecnología de Alimentos
3Universidad Pablo de Olavide

Contact the author

Keywords

hydroxytyrosol, UHPLC, mass spectrometry, yeast, fermentation.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

Nitrogen fertilization is an important practice to guarantee vineyards sustainability and performance over years, while ensuring berry quality. However, achieving a precise nitrogen fertilization to meet specific objectives of production is difficult. There is a lack of knowledge on the impact of nitrogen fertilizers (soil/foliar; organic/mineral) and different levels of fertilization on the interactions between carbon and nitrogen cycles within the vine. Crop models may be useful in that purpose because they can provide new insights of the effects of fertilization in carbon and nitrogen storage. The objective of this study is to build a model to simulate grapevine carbon and nitrogen content in vines to evaluate the impact of different fertilization strategies in vine growth and yield.

Proposal of zonification and characterization of terroirs in the Yalde-Najerilla-Uruñuela vine growing area (DOC Rioja, Spain), based on the soil influence

Natural Terroir Units (NTU) are being delimited in vine growing area DOCa Rioja, in collaboration with Uruñuela Cooperative, to characterized specific and singular Tempranillo (Vitis vinifera

Does treatment of grape juice with aspergillopepsin-i influence wine aroma?

Acid aspergillopepsins-i (ap-i) have been suggested for use in winemaking due to their ability to degrade proteins, which reduces haze formation and the necessity for bentonite to achieve protein stability. These endopeptidases cleave non-terminal amino acid bonds of proteins, resulting in their degradation.

IMPACT ON CHITOSAN APPLICATION OF DIFFERENT MICROORGANISMS HAVING OENOLOGICAL INTEREST

Chitosan is an effective antimicrobial agent available in the wine industry, because it ensures the control of a of spoilage microorganisms, such as Brettanomyces of lactic acid bacteria.

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.