IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast Assimilable Nitrogen and Sugar content.

Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast Assimilable Nitrogen and Sugar content.

Abstract

Hydroxytyrosol (HT) is well known for its potent antioxidant activity and anticarcinogenic, antimicrobial, cardioprotective and neuroprotective properties. One possible explanation to its origin in wines is the synthesis from tyrosol, which in turn is produced from the Ehrlich pathway by yeasts.  This work aims to explore the factors that could increase the final content as the initial concentration of yeast assimilable nitrogen (YAN) and sugar. Two different concentrations of YAN were proved between 210mg/L and 300 mg/L. Additionally, two different concentrations of sugar were used: 100g/L and 240 g/L.  Alcoholic fermentations in synthetic must were performed with the strain QA23. Commercial Saccharomyces cerevisiae yeasts QA23 were used, as well as a strain with a specific modification to increase the production of fusel alcohols. Experimental design includes different YAN and sugar concentrations. The analysis was performed in a Thermo Scientific liquid chromatography system consisting of a binary UHPLC Dionex Ultimate 3000RS, connected to a quadrupole orbitrap Qexactive hybrid mass spectrometer (Thermo Fisher Scientific, Bremen, Germany), which was equipped with a heated electrospray ionization probe (HESI-II). The column used was a ZORBAX SB-C18 (2.1 × 100 mm, 1.8-μm particle size) Higher concentrations of hydroxytyrosol were obtained in synthetic must with higher amount of sugar (240g/L) and lesser YAN (210mg/L). Furthermore, the modified yeast presents a higher capacity to produce HT and tyrosol. Selecting the adequate conditions of sugar and YAN can increase the HT and tyrosol content 10 times.These results might explain certain differences between HT content in wines.  

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Garcia-Parrilla Maria del Carmen1, González-Ramírez Marina1, Guillamón José M.2, Valero Eva3, Cerezo Ana B.1, Troncoso Ana M.1 and Garcia-Parrilla M. Carmen1

1Universidad de Sevilla
2Instituto de Agroquímica y Tecnología de Alimentos
3Universidad Pablo de Olavide

Contact the author

Keywords

hydroxytyrosol, UHPLC, mass spectrometry, yeast, fermentation.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

Characterization of the mechanisms underlying the tolerance of genotypes of Uva Cão to climate change: A transcriptomic and genomic study

Climate change has been influencing viticulture and changing wine profiles in the past years, and effects are expected to get worse.

The French grapevine breeding program resdur: state of the art and perspectives

The French grapevine breeding program for durable resistance to downy and powdery mildew (INRAE-ResDur) was initiated more than 20 years ago to help reduce the heavy use of plant protection products and provide a durable mean to cope with a strong pathogen pressure. This program has now proved to be effective, with about ten new varieties already officially registered. However, there is still a lot to be done (1) to reduce the duration of each breeding cycle, (2) to diversify disease factors’ pyramiding and anticipate emerging diseases, (3) to work towards larger adoption of the new resistant varieties. New breeding schemes incorporating for example genomic prediction of breeding values are being evaluated to accelerate genetic gains, saving cost and time while handling complex traits.

Effects of different organic amendments on soil, vine, grape and wine, in a long-term field experiment in Chinon vineyard (France)

In a long-term experiment carried out in Chinon vineyard (37, France) during 23 years, the effects of several organic amendments were studied on soil, vine, grapes and wine. Four main treatments were compared on a calcareous sandy soil: control without organic amendment, dry crushed pruning wood at 2.1.t-1.ha-1.year-1 (D1), cow manure at 10 t-1. ha-1.year-1 (D1) and cow manure applied at 20 t-1.ha-1.year-1 (D2). D1 levels were calculated to fill the annual humus losses by mineralization.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.