IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast Assimilable Nitrogen and Sugar content.

Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast Assimilable Nitrogen and Sugar content.

Abstract

Hydroxytyrosol (HT) is well known for its potent antioxidant activity and anticarcinogenic, antimicrobial, cardioprotective and neuroprotective properties. One possible explanation to its origin in wines is the synthesis from tyrosol, which in turn is produced from the Ehrlich pathway by yeasts.  This work aims to explore the factors that could increase the final content as the initial concentration of yeast assimilable nitrogen (YAN) and sugar. Two different concentrations of YAN were proved between 210mg/L and 300 mg/L. Additionally, two different concentrations of sugar were used: 100g/L and 240 g/L.  Alcoholic fermentations in synthetic must were performed with the strain QA23. Commercial Saccharomyces cerevisiae yeasts QA23 were used, as well as a strain with a specific modification to increase the production of fusel alcohols. Experimental design includes different YAN and sugar concentrations. The analysis was performed in a Thermo Scientific liquid chromatography system consisting of a binary UHPLC Dionex Ultimate 3000RS, connected to a quadrupole orbitrap Qexactive hybrid mass spectrometer (Thermo Fisher Scientific, Bremen, Germany), which was equipped with a heated electrospray ionization probe (HESI-II). The column used was a ZORBAX SB-C18 (2.1 × 100 mm, 1.8-μm particle size) Higher concentrations of hydroxytyrosol were obtained in synthetic must with higher amount of sugar (240g/L) and lesser YAN (210mg/L). Furthermore, the modified yeast presents a higher capacity to produce HT and tyrosol. Selecting the adequate conditions of sugar and YAN can increase the HT and tyrosol content 10 times.These results might explain certain differences between HT content in wines.  

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Garcia-Parrilla Maria del Carmen1, González-Ramírez Marina1, Guillamón José M.2, Valero Eva3, Cerezo Ana B.1, Troncoso Ana M.1 and Garcia-Parrilla M. Carmen1

1Universidad de Sevilla
2Instituto de Agroquímica y Tecnología de Alimentos
3Universidad Pablo de Olavide

Contact the author

Keywords

hydroxytyrosol, UHPLC, mass spectrometry, yeast, fermentation.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

An online training tool for wine professionals around the world: from responsible service to a sustainable consumption of wine

Most consumers enjoy wine in moderation, however, there remains a minority that may develop risky drinking habits, potentially harming themselves and those around them. For the last fifteen years, a prime objective of the wine in moderation programme has been to educate and empower the wine sector and now for the first time, a central education tool has been developed, integrating the topic of moderate consumption horizontally in all wine activities. The entire wine value chain – from the producer to the salesperson to the restaurant service staff – can contribute to reduce harmful consumption and encourage responsible drinking patterns.

Litchi tomato as a fumigation alternative in Washington state wine grape vineyards

The northern root-knot nematode (Meloidogyne hapla) is one of the most prevalent plant-parasitic nematodes affecting Washington State Vitis vinifera vineyards. This nematode induces small galls on roots, restricting water and nutrient uptake. In new vineyards this can impede establishment. In existing vineyards, it can exacerbate decline in chronically stressed vines. While preplant fumigation is a common strategy for M. hapla management, its efficacy is temporary and relies on broad-spectrum chemicals that undergo frequent regulatory scrutiny. The trap crop litchi tomato (Solanum sisymbriifolium) showed promise in reducing plant-parasitic nematode densities in potato. This prompted field greenhouse experiments to evaluate its potential to reduce M. hapla in V. vinifera.

Evaluation of wood starch content on bench grafting success rate in grapevine

Since the emergence of phylloxera, grafting has been the most used propagation method in viticulture. Despite all the improvement measures implemented in the nurseries, it is frequent that graft success rates vary depending on the nursery process and scion/rootstock combinations. The reasons behind this unsatisfactory behaviour are still unknown and can be diverse, although carbohydrate reserves might be hypothesised to be crucial, since callus, root, and new tissue formation will be built based on them. In order to identify the effect of carbohydrates on grafting success, nine combinations were established based on the starch content in grapevine scionwoods (cv. Tempranillo clone VN69) and rootstocks cuttings (110 Richter clone 237) used for grafting: Low (L), Medium (M), High (H).

Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. Through rhizodeposition, plants regulate their associated microbiome composition depending on the environment and plant factors, including genotypes. Since the phylloxera crisis, Vitis vinifera cultivars are mainly grafted onto American Vitis hybrids. Rootstocks play a pivotal role in the grapevine development, as the interface between the scion and the soil.

D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

Studying wine metabolome through multiple targeted methods is complicated and limitative; since grapes, yeasts, bacteria, oxygen, enological techniques and wine aging collaborate to deliver one of the richest metabolomic fingerprint.