IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Methyl Jasmonate Versus Nano-Methyl Jasmonate: Effect On The Stilbene Content In Monastrell Variety

Methyl Jasmonate Versus Nano-Methyl Jasmonate: Effect On The Stilbene Content In Monastrell Variety

Abstract

Stilbenes, a kind of non-flavonoid phenolic compounds, have been reported to be responsible for various beneficial effects. Their biological properties include antibacterial and antifungal effects, as well as cardioprotective, neuroprotective and anticancer actions (Guerrero et al. 2009).Several strategies can be used to increase stilbene content in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost (Gil-Muñoz et al. 2021).
This study observes the impact on stiblene composition of must and wine of Monastrell grapes that have been treated with methyl jasmonate and methyl jasmonate n-doped calcium phosphate nanoparticles (MeJ-ACP). The first objective of this study was to compare the effect of these treatments to determine if the stilbene composition of the berries and wines increased. The second aim was to determine if the nanoparticle treatments showed similar effects to way treatments so that the ones which are more efficient and sustainable from an agricultural point of view can be selected.
The experiments were conducted in a randomized block design during three consecutive seasons (2019-2021), in which all treatments were applied to three replicates, using 10 vines for each replication. Two foliar treatments were applied to the plants in spray form as a water suspension of MeJ 10 mM (methyl jasmonate and a water suspension of MeJ-ACP 1 mM (Mej-doped calcium phosphate nanoparticles) at veraison. Approximately 200 mL of the product was applied to each plant prepared with Tween 80 (Sigma Aldrich, St. Louis, MO, USA) as the wetting agent (0.1% v/v). Control plants were sprayed with aqueous solution of Tween 80 alone. For all treatments, a second application was performed 7 days after the first. Stilbenes were analyzed according to the methodology shown in Gil-Muñoz et al. (2017).
The results showed how, in general both treatments are able to increase stilbene composition in grapes and wines although depending on the season these results were more evident. As well, the the use of MeJ-ACP showed better results compared to MeJ despite using less quantity (1 mM compared to 10 mM typically) in wines in 2019 and 2021. So, this application form of MeJ could be used as an alternative in order to carry out a more efficient and sustainable agriculture and improve the wine quality.

References

Guerrero, R. F., García-Parrilla, M. C., Puertas, B., & Cantos-Villar, E. (2009). Resverarol, wine and Mediterranean diet, a review. Natural Products Communications, 4, 635–656.
Gil-Muñoz, R., Giménez-Bañón, M.J., Moreno-Olivares, J.D., Paladines-Quezada, D.F., Bleda-Sánchez, J.A., Fernández-Fernández, J.I., Parra-Torrejón, B., Ramirez-Rodriguez, G.B., Delgado-López, J.M.  (2021). Effect of methyl jasmonate doped nanoparticles on nitrogen composition of Monastrell grapes and wines. Biomolecules, 11, 1631.
Gil-Muñoz, R., Fernández-Fernández, J.I,, Crespo-Villegas, O., Garde-Cerdán, T. Elicitors used as a tool to increase stilbenes in grapes and wines. Food Research International, 98, 34-39.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gil-Muñoz Rocio1, Giménez-Banón Maria José1, Moreno-Olivares Juan Daniel1, Paladines-Quezada Diego Fernando1, Bleda-Sánchez Juan Antonio1, Fernández-Fernández José Ignacio1, Parra-Torrejón Belén2, Ramirez-Rodriguez Gloria Belén2 and Delgado-López José Manuel2

1INSTITUTO MURCIANO DE INVESTIGACION Y DESARROLLO AGRARIO Y MEDIOAMBIENTAL 
2Deparment of Inorganic Chemistry, Faculty of Scienc 3Affiliation of the third Author 

Contact the author

Keywords

elicitors, nanotechnology, stilbenes, grapes, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Cold plasma at atmospheric pressure for eliminating Brettanomyces from oak wood

In the oenological industry, the maintenance and sanitation of oak barrels has become a fundamental task. The wood has a porous structure that facilitates the penetration not only of the wine, but of the microorganisms it contains, such as the alterative yeast Brettanomyces bruxellensis.

Grapesoil: An integrated model to simulate water and nitrogen fluxes in diversified vineyards

Cover crops in vineyards bring numerous benefits, including enhanced soil health, improved water infiltration, and potential pest reduction. However, they also present risks, such as reduced vine vigour and yield due to competition for water and nutrients (Celette & Gary 2013, Garcia et al., 2018).

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Do natural wines differ from conventionally-produced wines?

In recent years, consumer awareness for consuming healthy and environmental sustainability products has considerably increased [1]. In an ever-changing and highly competitive environment such as the wine sector, production of wines without sulfites, or biodynamic, organic or vegan wines, has experienced an important increase to meet the new needs of consumers [2,3]. Beyond these categories of regulated products, a new concept has emerged: natural wines (NW), for which there is not an established definition or legal regulation. Rather, producers have a personal idea of naturalness under the premise of applying minimal intervention from grape to wine production [4]. In this context, it is hypothesized that self-defined natural wines are different from conventional wines (CW) in their sensory and chemical profile. The predicament of natural wine is based on anecdotic declarations and assumes that minimal intervention guarantees the production of wines with organoleptic properties able to express the “terroir” and thus promote wine diversity, plurality and sensory typicity against the risk of standardization of CW.

Chemical and sensory characterization of Xinomavro PDO red wine

Aroma is considered one of the most important factors in determining the quality and character of wine. The relationship between wine character and its volatile composition is recognized by several researchers worldwide. Since these compounds influence the sensory perceptions of consumers, both volatile composition and sensory properties are essential in determining wine aroma characteristics.