IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Methyl Jasmonate Versus Nano-Methyl Jasmonate: Effect On The Stilbene Content In Monastrell Variety

Methyl Jasmonate Versus Nano-Methyl Jasmonate: Effect On The Stilbene Content In Monastrell Variety

Abstract

Stilbenes, a kind of non-flavonoid phenolic compounds, have been reported to be responsible for various beneficial effects. Their biological properties include antibacterial and antifungal effects, as well as cardioprotective, neuroprotective and anticancer actions (Guerrero et al. 2009).Several strategies can be used to increase stilbene content in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost (Gil-Muñoz et al. 2021).
This study observes the impact on stiblene composition of must and wine of Monastrell grapes that have been treated with methyl jasmonate and methyl jasmonate n-doped calcium phosphate nanoparticles (MeJ-ACP). The first objective of this study was to compare the effect of these treatments to determine if the stilbene composition of the berries and wines increased. The second aim was to determine if the nanoparticle treatments showed similar effects to way treatments so that the ones which are more efficient and sustainable from an agricultural point of view can be selected.
The experiments were conducted in a randomized block design during three consecutive seasons (2019-2021), in which all treatments were applied to three replicates, using 10 vines for each replication. Two foliar treatments were applied to the plants in spray form as a water suspension of MeJ 10 mM (methyl jasmonate and a water suspension of MeJ-ACP 1 mM (Mej-doped calcium phosphate nanoparticles) at veraison. Approximately 200 mL of the product was applied to each plant prepared with Tween 80 (Sigma Aldrich, St. Louis, MO, USA) as the wetting agent (0.1% v/v). Control plants were sprayed with aqueous solution of Tween 80 alone. For all treatments, a second application was performed 7 days after the first. Stilbenes were analyzed according to the methodology shown in Gil-Muñoz et al. (2017).
The results showed how, in general both treatments are able to increase stilbene composition in grapes and wines although depending on the season these results were more evident. As well, the the use of MeJ-ACP showed better results compared to MeJ despite using less quantity (1 mM compared to 10 mM typically) in wines in 2019 and 2021. So, this application form of MeJ could be used as an alternative in order to carry out a more efficient and sustainable agriculture and improve the wine quality.

References

Guerrero, R. F., García-Parrilla, M. C., Puertas, B., & Cantos-Villar, E. (2009). Resverarol, wine and Mediterranean diet, a review. Natural Products Communications, 4, 635–656.
Gil-Muñoz, R., Giménez-Bañón, M.J., Moreno-Olivares, J.D., Paladines-Quezada, D.F., Bleda-Sánchez, J.A., Fernández-Fernández, J.I., Parra-Torrejón, B., Ramirez-Rodriguez, G.B., Delgado-López, J.M.  (2021). Effect of methyl jasmonate doped nanoparticles on nitrogen composition of Monastrell grapes and wines. Biomolecules, 11, 1631.
Gil-Muñoz, R., Fernández-Fernández, J.I,, Crespo-Villegas, O., Garde-Cerdán, T. Elicitors used as a tool to increase stilbenes in grapes and wines. Food Research International, 98, 34-39.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gil-Muñoz Rocio1, Giménez-Banón Maria José1, Moreno-Olivares Juan Daniel1, Paladines-Quezada Diego Fernando1, Bleda-Sánchez Juan Antonio1, Fernández-Fernández José Ignacio1, Parra-Torrejón Belén2, Ramirez-Rodriguez Gloria Belén2 and Delgado-López José Manuel2

1INSTITUTO MURCIANO DE INVESTIGACION Y DESARROLLO AGRARIO Y MEDIOAMBIENTAL 
2Deparment of Inorganic Chemistry, Faculty of Scienc 3Affiliation of the third Author 

Contact the author

Keywords

elicitors, nanotechnology, stilbenes, grapes, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Global warming has enhanced the frequency and severity of drought events, hence calling for a better management of water resources in the vineyard and for an improvement of breeding platforms. Somatic embryogenesis (SE) (i.e. the initiation of embryos from somatic tissues) can spontaneously generate new genetic variability, which results from genetic mutations, changes in epigenetic marks, or phenotypic alterations. This study was tailored to test whether vines in vitro regenerated through SE (i.e. somaclones), can tolerate water deprivation better than the mother plant.

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.

Effect of two contrasting soils on grape and wine sensory characteristics in Shiraz

Aims: Berry composition and wine sensory characteristics reflect the origin of grape production and seasonal climatic conditions. The aim of this study was to compare berry and wine sensory characteristics from two contrasting soil types where the vineyard climate, geography, topography, vine and management factors were not different.

Are my bubbles shrinking? A deeper look at oxygen desorption in wine

In the past decade, there has been an increasing amount of work dedicated to understanding micro-oxygenation in wine.

Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

The use of selected cultures of the species Lactiplantibacillus plantarum in Oenology has grown in prominence in recent years. While initial applications of this species centred very much around malolactic fermentation (MLF), there is strong evidence to show that certain strains can be harnessed for their bio-protective effects. Unwanted spontaneous MLF during alcoholic fermentation (AF), driven by rogue Oenococcus oeni, is a winemaking deviation that is very difficult to manage when it occurs. This work set out to determine the efficacy of one particular strain of Lactiplantibacillus plantarum(Viniflora® NoVA™ Protect), against this problem in Cabernet Sauvignon must. The work was carried out at commercial scale and in a winery environment and compared the bio-protective culture with the more traditional approach of reducing must pH by the addition of tartaric acid. The combination of both was also investigated. The concentration of both Oenococcus oeni and Lactiplantibacillus plantarum was determined using qPCR. The adventitious Oenococcus oeni showed the most growth during AF in the control wine, whereas in the wines treated with Lactiplantibacillus plantarum a bacteriostatic effect against this species was observed. This effect was comparable to the wines treated with tartaric acid. This has particular commercial relevance for controlling the flora in musts with high pH, or when the addition of tartaric acid is either not permitted or is prohibitive for other reasons.