IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Depletion Of Vine-Shoots Phenolic Composicion After Being Used As An Enological Tool For Wine Differentiation

Depletion Of Vine-Shoots Phenolic Composicion After Being Used As An Enological Tool For Wine Differentiation

Abstract

Pruning vine-shoots are a viticulture waste that have been traditionally poorly exploited in relation to its chemical minority composition related to phenolic and volatile compounds. In this line, toasted vine-shoots supposes a proposal of enological tool to use to modulate the chemical and sensorial profile of wines. From a phenolic point of view, when vine-shoots are used during winemaking mainly influence to increase the flavanols and stilbenes content, mostly trans-resveratrol, as also an increasing in the sweet tannins and decreasing the green character and total anthocyanins, changing the violet for garnet colour.
Along with the already proven release of compounds from the vine-shoots to wines elaborates with them, the transfer of some of them that are present in wines to vine-shoots must be considered. For this, the aim of this work was to evaluate the depletion in terms of transfer of phenolic compounds from the wine to vine-shoots that were used during vinification. For which, vine-shoots were analysed before and after having been in contact with the wine. To compare the effect on the type of wine, two wines from Tempranillo and Cabernet Sauvignon were considered, to which toasted vine-shoots of their corresponding varieties were added after malolactic fermentation in a dose of 24 g/L. The analysis in terms of phenolic composition was development by HPLC-DAD.

The results revealed that different patterns were observed for families. As expected, there was a clear transfer of anthocyanins from the wine to vine-shoots, ranging between 3.3 and 3.5 g/Kg for Tempranillo and Cabernet-Sauvignon, which resulted in a loss of 25 to 27% in wines from the respective varieties. The same behaviour was observed for flavonols group, whose content was among 0.29 and 0.25 g/Kg for Tempranillo and Cabernet-Sauvignon vine-shoots, being its decrease in wines between 31 to 25%, respectively. In contrast, flavanols, phenolic acids and stilbenes showed an average increase of 14%, 8% and 57%, showing trans-resveratrol the greatest increase.
These results show the different transfer of phenolic compounds from the wine to vine-shoos. This would suppose that, after being used during winemaking, vine-shoos could be considered for a second use, given their remaining potential. 

Acknowledgments: This study was supported by USARVID019 Project (Ref.: IDI-20190844), financed by Pago de la Jaraba winery (Albacete, Spain) through the FEDER and CDTI entities.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sánchez-Gómez Rosario1, Cebrián-Tarancón Cristina1, Fernández-Roldán Francisco1, Alonso Gonzalo L.1 and Salinas M. Rosario1

1Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha

Contact the author

Keywords

depletion, loss level, phenolic compounds, vine-shoots enological tool

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L [Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples.

Monitoring grapevine downy mildew epidemics with SkySat and PlanetScope imagery

Grapevine downy mildew (GDM), caused by the oomycete Plasmopara viticola, is one of the most destructive diseases of Vitis vinifera worldwide. All V. vinifera cultivars are susceptible to P. viticola infection, and epidemics can spread across an entire vineyard within a matter of weeks. Severe outbreaks cause substantial reductions in yield and fruit quality. Tracking GDM spread by manual scouting is time-consuming and unfeasible over large spatial extents.

Climate change impacts on Douro Region viticulture and adaptation measures

Climate has a significant impact in the success of any agricultural system, with a direct influence on the crops suitability to a given region, interfering on yield and quality and also with the economic sustainability of the productive activity. In the Douro Demarcated Region (RDD), as in most regions of the Mediterranean climate, the scarce precipitation (33% has less than 600 mm per year), and your high variability, associated with high rates of evapotranspiration during the summer, is usually one of the fundamental factors that limit the grapevine development, as well as the production and quality of the harvest. Thus, facing the scenario in temperature changes for the next decades (1.5-2.5°C) and confirming the predictions of precipitation decreases and/or great variability in the occurrence of heat waves and intense rainfall, the consequences for slope stability in mountain viticulture and sustainability of all operations involved, are risks to be taken into account. In this way, a deepest and sustained knowledge regarding the adaptation measures to adverse environmental conditions is of a crucial importance, enabling a more efficient adaptation of plant growth conditions and the optimization of production and quality of the grapevines. The development of this work, carried out in two commercial vineyards, one located in Soutelo do Douro, São João da Pesqueira, Cima Corgo sub-region, and another located in Numão, Vila Nova de Foz Côa, Douro Superior sub-region, it seeks to establish a relationship between climatic elements and physiological, productive and qualitative parameters, as well as to evaluate the effectiveness of adaptation measures, including different types of deficit irrigation (2002-2019) and the application of shading nets (2019-2020) in the physiological, viticultural and oenological behavior in the Touriga Nacional and Moscatel Galego Branco varieties, respectively. The results showed that the application of deficit irrigation allowed to significantly reduce the impact of the adverse weather conditions at key moments in the development of the grapevine, particularly in the period immediately before veráison and maturation, reducing the negative effects on the physiological processes and productivity, without compromise the must quality parameters. On the other hand, the application of shading nets significantly reduced de leaves temperature, allowing to increase the water potential, stomatal conductance and photosynthetic rate of grapes, which was reflected in the yield increase in the 2nd year of the study. For the maturation indicators, higher levels of total acidity, malic acid and assimilable nitrogen were obtained. The last measure presents a huge potential, being essential to carry out more years of trials to obtain stronger conclusions in terms of production parameters, but also in characteristics as important as the grape ripening components and the organoleptic characteristics of wines.

Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

ulfur compounds in wine have been studied for several years due to their impact on wine flavour, but the role of polysulfides is a recent topic. Polysulfides in wine are formed when two sulfhydryl groups oxidize, especially in presence of elemental sulfur or metal catalysts from field treatment residues (Ugliano et al. 2011). These compounds are odourless, but can degrade during storage and affect the wine quality. The mechanism of their formation is still largely unknown but different chemical and biochemical pathways have been suggested. Disulfides from cysteine (Cys) and glutathione (GSH) have been revealed in model wines (Kreitman et al. 2016) and more recently also higher polymerized forms in real wines (Van Leeuwen et al. 2020). Volatile varietal thiols like 3-mercaptohexanol (3MH) and 4-mercaptopentanone (4MMP) – flavour compounds with tropical or fruity notes – could undergo similar reactions, also with Cys and GSH, subsequently losing their flavour property (fate). Even more concerning is the possible release of H2S from polysulfides during storage, leading to undesired off-flavours (Sarrazin et al. 2010).

Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Rachis browning is a common abiotic stress that occurs during postharvest storage, leading to a decrease in commercial value of table grapes and resulting in significant economic losses. Its early detection could enable the implementation of preventive strategies. In this report, we show the feasibility of a non-destructive early detection of browning based on Hyper Spectral Imaging (HSI). Furthermore, rachis samples were subjected to transcriptomic analysis to understand putative pathways causing differences in browning within varieties.