IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Depletion Of Vine-Shoots Phenolic Composicion After Being Used As An Enological Tool For Wine Differentiation

Depletion Of Vine-Shoots Phenolic Composicion After Being Used As An Enological Tool For Wine Differentiation

Abstract

Pruning vine-shoots are a viticulture waste that have been traditionally poorly exploited in relation to its chemical minority composition related to phenolic and volatile compounds. In this line, toasted vine-shoots supposes a proposal of enological tool to use to modulate the chemical and sensorial profile of wines. From a phenolic point of view, when vine-shoots are used during winemaking mainly influence to increase the flavanols and stilbenes content, mostly trans-resveratrol, as also an increasing in the sweet tannins and decreasing the green character and total anthocyanins, changing the violet for garnet colour.
Along with the already proven release of compounds from the vine-shoots to wines elaborates with them, the transfer of some of them that are present in wines to vine-shoots must be considered. For this, the aim of this work was to evaluate the depletion in terms of transfer of phenolic compounds from the wine to vine-shoots that were used during vinification. For which, vine-shoots were analysed before and after having been in contact with the wine. To compare the effect on the type of wine, two wines from Tempranillo and Cabernet Sauvignon were considered, to which toasted vine-shoots of their corresponding varieties were added after malolactic fermentation in a dose of 24 g/L. The analysis in terms of phenolic composition was development by HPLC-DAD.

The results revealed that different patterns were observed for families. As expected, there was a clear transfer of anthocyanins from the wine to vine-shoots, ranging between 3.3 and 3.5 g/Kg for Tempranillo and Cabernet-Sauvignon, which resulted in a loss of 25 to 27% in wines from the respective varieties. The same behaviour was observed for flavonols group, whose content was among 0.29 and 0.25 g/Kg for Tempranillo and Cabernet-Sauvignon vine-shoots, being its decrease in wines between 31 to 25%, respectively. In contrast, flavanols, phenolic acids and stilbenes showed an average increase of 14%, 8% and 57%, showing trans-resveratrol the greatest increase.
These results show the different transfer of phenolic compounds from the wine to vine-shoos. This would suppose that, after being used during winemaking, vine-shoos could be considered for a second use, given their remaining potential. 

Acknowledgments: This study was supported by USARVID019 Project (Ref.: IDI-20190844), financed by Pago de la Jaraba winery (Albacete, Spain) through the FEDER and CDTI entities.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sánchez-Gómez Rosario1, Cebrián-Tarancón Cristina1, Fernández-Roldán Francisco1, Alonso Gonzalo L.1 and Salinas M. Rosario1

1Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha

Contact the author

Keywords

depletion, loss level, phenolic compounds, vine-shoots enological tool

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

La viticulture durable: concept et application aux terroirs viticoles

Evoquer la notion de durabilité pour la vigne, plante multimillénaire, et le vin, tous deux intimement liés aux origines de notre civilisation, peut paraître un non-sens.

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

Comparison of the aroma profile in total and partial dealcoholisation of white and red wines by reverse osmosis

The increasing demand for low-alcohol and non-alcoholic wines has led to the development of advanced dealcoholisation techniques aimed at preserving wine quality while reducing ethanol content. Reverse osmosis is one of the most widely used membrane-based processes for the selective removal of ethanol [1].

Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Calcium-induced instabilities present a major challenge in bottled wines, with calcium tartrate (CaT) precipitation becoming increasingly common due to rising calcium levels in grape must, largely driven by climate change. Although CaT is an insoluble salt, its instability— although less frequent than potassium hydrogen tartrate (KHT) precipitation—is more difficult to predict and control, as it develops gradually over time.

Within vineyard temperature structure and variability in the umpqua valley of Oregon

Climate influences viticulture and wine production at various scales with the majority of attention given to regional characteristics that define the general varieties that can be grown and the wine styles that can be produced.