IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Depletion Of Vine-Shoots Phenolic Composicion After Being Used As An Enological Tool For Wine Differentiation

Depletion Of Vine-Shoots Phenolic Composicion After Being Used As An Enological Tool For Wine Differentiation

Abstract

Pruning vine-shoots are a viticulture waste that have been traditionally poorly exploited in relation to its chemical minority composition related to phenolic and volatile compounds. In this line, toasted vine-shoots supposes a proposal of enological tool to use to modulate the chemical and sensorial profile of wines. From a phenolic point of view, when vine-shoots are used during winemaking mainly influence to increase the flavanols and stilbenes content, mostly trans-resveratrol, as also an increasing in the sweet tannins and decreasing the green character and total anthocyanins, changing the violet for garnet colour.
Along with the already proven release of compounds from the vine-shoots to wines elaborates with them, the transfer of some of them that are present in wines to vine-shoots must be considered. For this, the aim of this work was to evaluate the depletion in terms of transfer of phenolic compounds from the wine to vine-shoots that were used during vinification. For which, vine-shoots were analysed before and after having been in contact with the wine. To compare the effect on the type of wine, two wines from Tempranillo and Cabernet Sauvignon were considered, to which toasted vine-shoots of their corresponding varieties were added after malolactic fermentation in a dose of 24 g/L. The analysis in terms of phenolic composition was development by HPLC-DAD.

The results revealed that different patterns were observed for families. As expected, there was a clear transfer of anthocyanins from the wine to vine-shoots, ranging between 3.3 and 3.5 g/Kg for Tempranillo and Cabernet-Sauvignon, which resulted in a loss of 25 to 27% in wines from the respective varieties. The same behaviour was observed for flavonols group, whose content was among 0.29 and 0.25 g/Kg for Tempranillo and Cabernet-Sauvignon vine-shoots, being its decrease in wines between 31 to 25%, respectively. In contrast, flavanols, phenolic acids and stilbenes showed an average increase of 14%, 8% and 57%, showing trans-resveratrol the greatest increase.
These results show the different transfer of phenolic compounds from the wine to vine-shoos. This would suppose that, after being used during winemaking, vine-shoos could be considered for a second use, given their remaining potential. 

Acknowledgments: This study was supported by USARVID019 Project (Ref.: IDI-20190844), financed by Pago de la Jaraba winery (Albacete, Spain) through the FEDER and CDTI entities.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sánchez-Gómez Rosario1, Cebrián-Tarancón Cristina1, Fernández-Roldán Francisco1, Alonso Gonzalo L.1 and Salinas M. Rosario1

1Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha

Contact the author

Keywords

depletion, loss level, phenolic compounds, vine-shoots enological tool

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Studying the redox state of wines under oxidative processes with a multi-parametric analysis

The detection of reducing compounds such as phenolic acids, anthocyanins or tannins is of prime importance to decipher on the antioxidant and anti-aging properties of wines.

Beneficial effects of moderate consumption of Teran red wine on blood lipid profile: a preliminary study on healthy volunteers

Moderate wine consumption may impact several human health aspects, among others as a result of phenolic compounds present in wine and their bioactive properties. The aim of this study was to determine whether six weeks of daily, moderate Teran red wine consumption affects the levels of total cholesterol, high-density lipoprotein cholesterol – HDL, low-density lipoprotein cholesterol – LDL, and triglycerides. Sixty-eight healthy adults (46 women and 22 men) aged 25-64 years voluntarily agreed to participate in the study.

Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Table grapes, being consumed as fresh, raisins, and transformed products are among the most appreciated fruits worldwide. Its popularity is increasing also due to its organoleptic and nutritional qualities that meet the consumers’ interest in healthier foods. Recent data from International Organization of Vine and Wine (OIV) revealed that table grape production has doubled in the last twenty years, and varietal availability has increased thanks to the several breeding programs.
To maintain the socio-economic impact of this sector, new challenges need to be addressed.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.