IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Depletion Of Vine-Shoots Phenolic Composicion After Being Used As An Enological Tool For Wine Differentiation

Depletion Of Vine-Shoots Phenolic Composicion After Being Used As An Enological Tool For Wine Differentiation

Abstract

Pruning vine-shoots are a viticulture waste that have been traditionally poorly exploited in relation to its chemical minority composition related to phenolic and volatile compounds. In this line, toasted vine-shoots supposes a proposal of enological tool to use to modulate the chemical and sensorial profile of wines. From a phenolic point of view, when vine-shoots are used during winemaking mainly influence to increase the flavanols and stilbenes content, mostly trans-resveratrol, as also an increasing in the sweet tannins and decreasing the green character and total anthocyanins, changing the violet for garnet colour.
Along with the already proven release of compounds from the vine-shoots to wines elaborates with them, the transfer of some of them that are present in wines to vine-shoots must be considered. For this, the aim of this work was to evaluate the depletion in terms of transfer of phenolic compounds from the wine to vine-shoots that were used during vinification. For which, vine-shoots were analysed before and after having been in contact with the wine. To compare the effect on the type of wine, two wines from Tempranillo and Cabernet Sauvignon were considered, to which toasted vine-shoots of their corresponding varieties were added after malolactic fermentation in a dose of 24 g/L. The analysis in terms of phenolic composition was development by HPLC-DAD.

The results revealed that different patterns were observed for families. As expected, there was a clear transfer of anthocyanins from the wine to vine-shoots, ranging between 3.3 and 3.5 g/Kg for Tempranillo and Cabernet-Sauvignon, which resulted in a loss of 25 to 27% in wines from the respective varieties. The same behaviour was observed for flavonols group, whose content was among 0.29 and 0.25 g/Kg for Tempranillo and Cabernet-Sauvignon vine-shoots, being its decrease in wines between 31 to 25%, respectively. In contrast, flavanols, phenolic acids and stilbenes showed an average increase of 14%, 8% and 57%, showing trans-resveratrol the greatest increase.
These results show the different transfer of phenolic compounds from the wine to vine-shoos. This would suppose that, after being used during winemaking, vine-shoos could be considered for a second use, given their remaining potential. 

Acknowledgments: This study was supported by USARVID019 Project (Ref.: IDI-20190844), financed by Pago de la Jaraba winery (Albacete, Spain) through the FEDER and CDTI entities.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sánchez-Gómez Rosario1, Cebrián-Tarancón Cristina1, Fernández-Roldán Francisco1, Alonso Gonzalo L.1 and Salinas M. Rosario1

1Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha

Contact the author

Keywords

depletion, loss level, phenolic compounds, vine-shoots enological tool

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

What strategies do wine firms adopt to integrate CSR into their activities? An analysis among Italian wineries

Corporate Social Responsibility (CSR), as defined by the European Commission, is a strategic framework through which companies integrate social, environmental, and economic sustainability into their operations (European Commission, 2001).

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a Southwestern France vineyard

The soil plays a pivotal role in the agroecological transition processes, due to its numerous implications in production support, water regulation, air and nutrient supply, and its function of reservoir for the major part of planet biodiversity. Therefore, soil quality and adequate soil management are key levers for an ecologically and economically sustainable viticulture. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it gathered winegrowers from the south-west of France (Gascony), scientists, advisors and technicians, around a project focused on the biological functioning of viticultural soil and the design of better-adapted technical paths for soil protection.

How sensor technologies combined with artificial intelligence increase the efficiency in grapevine breeding (research): current developments and future perspectives

Viticulture and grapevine breeding programs have to face and adapt to the rapidly changing growing conditions due to the ongoing climate change, the scarcity of resources and the demand for sustainability within the whole value chain of wine production. In times of highly effective and cost-efficient genotyping technologies routinely applied in plant research and breeding, the need for comparable high-speed and high-resolution phenotyping tools has increased substantially. The disciplines of grapevine research, breeding and precision viticulture picked up this demand – mostly independent from each other – by the development, validation and establishment of different sensor technologies in order to extend management strategies or to transform labor-intensive and expensive phenotyping.

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored.

Entre ce que les consommateurs disent, ce qu’ils apprécient et ce qu’ils achètent… où se situent les vins de chasselas ?

Originaire du bassin lémanique, le chasselas est l’emblème de la viticulture suisse. Pour autant, les surfaces de chasselas n’ont cessé de diminuer, passant de 6’585 hectares en 1986 à près de 3’600 aujourd’hui, reflet d’une baisse de consommation. Une récente étude a cherché à comprendre les raisons de ce désintérêt. Réalisée dans