IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Abstract

Valpolicella is an Italian region famous for the production of high quality red wines. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Wines were produced with a standard protocol with Corvina and Corvinone grapes, the two main varieties of Valpolicella appellation. Grapes were harvested from five different vineyards located in two sub-regions within Valpolicella during three 2017, 2018 and 2019 vintages. Wines were submitted to accelerated aging treatment at 16°C and 40 °C for 30 days in epoxy resin sealed vials. Free volatile compounds and glycosidic precursors were analysed with gas chromatography mass spectrometry (GC-MS) analysis coupled with SPE and SPME extractions techniques.

Application of multivariate data analysis techniques to young wines allowed to identify volatile chemical patterns representing the unique aroma chemical signature of the geographical origin of each wine, regardless of vintages. In the case of aged wines, aroma signatures of individual geographical origin were preserved to a good extent after aging. In the case of Corvina, ageing slightly reduced the diversity associated with vineyard signature, conversely in Corvinone it seemed to have enhanced it. Terpenes were at the same times among the main drivers of vineyard signatures of both young and aged wines but also among the compounds most affected by ageing treatments. Highly relevant correlations were found between the decrease of some of the terpenes, mainly linalool, geraniol, β-citronellol and nerol, and the occurrence or increase of others like p-menthane-1,8-diol, 1,4- and 1,8-cineole. A significant influence of pH was found in the accumulation patterns of 1,8-cineole. These transformations involve odor- active compounds with implications for floral and balsamic attributes. Despite the deep changes occurring during aging, aged wines retained an aroma chemical signature that was characteristic of their geographical origin.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Luzzini Giovanni1, Slaghenaufi Davide1, Ugliano Maurizio1

1University of Verona

Contact the author

Keywords

Valpolicella, wine aging, terroir, Chemical signature of geographical identity, Red wine aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

Effect of the presence of anthocyanins on the interaction between wine phenolic compounds and high molecular weight salivary proteins

As a result of climate change consequences, there is a gap between the times at which the grapes reach the phenolic and the technology maturities.

The use of rootstock as a lever in the face of climate change and dieback of vineyard

As viticulture faces challenges such as climate change or vineyard dieback, the choice of the variety and rootstock becomes more and more crucial. To study rootstock levers in the Bordeaux region, a parcel of Cabernet Sauvignon (CS) was planted with four rootstocks in 2014. Twenty repetitions of each of the following four rootstocks were set up: 101-14 MGt, Nemadex AB, 420A MGt and Gravesac. The number of bunches, yields and pruning weights of the vine shoots were measured individually on 240 vines from 2017 to 2021. Since 2020, nitrogen status assessed by assimilable nitrogen level, hydric status assessed by δ13C and berry maturity were measured on 80 samples taken from 20 repetitions of the four rootstocks. A lower yield was measured for CS grafted onto Nemadex AB due to the lower number of bunches and the lower weight of berries. The differences between the other three rootstocks are small, but CS grafted onto 420A MGt was the most productive. The CS grafted onto Nemadex AB had the lowest pruning weight while 101-14 MGt had the highest. In 2020, δ13C showed a more moderate water stress with 101-14 MGt and 420A MGt than with Nemadex AB. Surprisingly, the Gravesac was under more stress than the 101-14 MGt. The nitrogen status in the berries was better for Nemadex AB but this was perhaps due to the significantly lower weight of the berries.Rootstock 101-14 MGt attained the highest accumulation of sugars in the berries while 420A MGt allows to preserve higher acidity. The parcel is still young which may explain some of the results. These measures must therefore be continued over the next several years to fully assess the effects of these rootstocks on the development of the vines and the quality of the production under new climatic conditions.

High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

AIM: High pressure technologies represent a promising alternative to thermal treatments for improving quality and safety of liquid foods.

Comportement hydrique des sols viticoles et leur influence sur le terroir

L’étude des relations Terroir – Vigne – Raisin est complexe. La recherche et le développement des facteurs qualitatifs qui influencent le caractère des vins sont multiples. Divers travaux mettent en évidence la relation entre l’alimentation en eau de la plante, son développement végétatif et les caractéristiques de ses raisins.