IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Abstract

Valpolicella is an Italian region famous for the production of high quality red wines. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Wines were produced with a standard protocol with Corvina and Corvinone grapes, the two main varieties of Valpolicella appellation. Grapes were harvested from five different vineyards located in two sub-regions within Valpolicella during three 2017, 2018 and 2019 vintages. Wines were submitted to accelerated aging treatment at 16°C and 40 °C for 30 days in epoxy resin sealed vials. Free volatile compounds and glycosidic precursors were analysed with gas chromatography mass spectrometry (GC-MS) analysis coupled with SPE and SPME extractions techniques.

Application of multivariate data analysis techniques to young wines allowed to identify volatile chemical patterns representing the unique aroma chemical signature of the geographical origin of each wine, regardless of vintages. In the case of aged wines, aroma signatures of individual geographical origin were preserved to a good extent after aging. In the case of Corvina, ageing slightly reduced the diversity associated with vineyard signature, conversely in Corvinone it seemed to have enhanced it. Terpenes were at the same times among the main drivers of vineyard signatures of both young and aged wines but also among the compounds most affected by ageing treatments. Highly relevant correlations were found between the decrease of some of the terpenes, mainly linalool, geraniol, β-citronellol and nerol, and the occurrence or increase of others like p-menthane-1,8-diol, 1,4- and 1,8-cineole. A significant influence of pH was found in the accumulation patterns of 1,8-cineole. These transformations involve odor- active compounds with implications for floral and balsamic attributes. Despite the deep changes occurring during aging, aged wines retained an aroma chemical signature that was characteristic of their geographical origin.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Luzzini Giovanni1, Slaghenaufi Davide1, Ugliano Maurizio1

1University of Verona

Contact the author

Keywords

Valpolicella, wine aging, terroir, Chemical signature of geographical identity, Red wine aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored.

Les motivations du vigneron en quête de l’expression “terroir”

During the 1985 harvest, I was able to notice in the taste perception a break in the harmony of the wine during even partial blends of grapes from different plots. At the same time, I noted a good reaction from customers for greater product customization. As a result, I was led to seek the objective limits of the terroir of a cuvée and by a constant and permanent refinement of the parameters specific to each of the terroirs.

Assyrtiko wines of Santorini produced by different autochthonous yeasts: Differences in aromatic and organoleptic profiles

Different yeasts were isolated from spontaneous fermentation of Assyrtiko grape must in Santorini Island, Greece. Molecular typing revealed the presence of three Saccharomyces cerevisiae strains (S9, S13, S24) and one strain of the yeast species Nakazawaea ishiwadae (N.i). The four isolated strains were further tested in laboratory scale fermentations of Assyrtiko must in pure inoculation cultures and in sequential inoculation (72 hours) of each S. cerevisiae strain with the strain of N. ishiwadae. All fermentation trials were realised in duplicate.

The use of elicitors in viticulture: a tool to obtain highly colored wines with a reduce alcohol content?

Climate change is causing a gap between the technological and phenolic maturity of grapes, resulting in wines with high alcohol content and low polyphenol concentration. Another phenomenon associated with high temperatures and whose effect is more pronounced if the harvest is delayed is the decrease in the acidity of the grapes, mainly in malic acid, and an increase in pH caused by the accumulation of potassium derived from the increase in temperature. Therefore, climate change and the effects it causes on the vine leads to unbalanced wines, with high alcohol content and lack of color, with green tannins, astringency and excessively low acidity if not corrected.