IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Abstract

Valpolicella is an Italian region famous for the production of high quality red wines. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Wines were produced with a standard protocol with Corvina and Corvinone grapes, the two main varieties of Valpolicella appellation. Grapes were harvested from five different vineyards located in two sub-regions within Valpolicella during three 2017, 2018 and 2019 vintages. Wines were submitted to accelerated aging treatment at 16°C and 40 °C for 30 days in epoxy resin sealed vials. Free volatile compounds and glycosidic precursors were analysed with gas chromatography mass spectrometry (GC-MS) analysis coupled with SPE and SPME extractions techniques.

Application of multivariate data analysis techniques to young wines allowed to identify volatile chemical patterns representing the unique aroma chemical signature of the geographical origin of each wine, regardless of vintages. In the case of aged wines, aroma signatures of individual geographical origin were preserved to a good extent after aging. In the case of Corvina, ageing slightly reduced the diversity associated with vineyard signature, conversely in Corvinone it seemed to have enhanced it. Terpenes were at the same times among the main drivers of vineyard signatures of both young and aged wines but also among the compounds most affected by ageing treatments. Highly relevant correlations were found between the decrease of some of the terpenes, mainly linalool, geraniol, β-citronellol and nerol, and the occurrence or increase of others like p-menthane-1,8-diol, 1,4- and 1,8-cineole. A significant influence of pH was found in the accumulation patterns of 1,8-cineole. These transformations involve odor- active compounds with implications for floral and balsamic attributes. Despite the deep changes occurring during aging, aged wines retained an aroma chemical signature that was characteristic of their geographical origin.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Luzzini Giovanni1, Slaghenaufi Davide1, Ugliano Maurizio1

1University of Verona

Contact the author

Keywords

Valpolicella, wine aging, terroir, Chemical signature of geographical identity, Red wine aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Cultures des vignobles en forte pente: possibilités de mécanisation. Effet de l’exposition et de l’orientation des rangs

Plus de la moitié du vignoble suisse (14’000 ha) est situé sur des coteaux en forte pente (> 30%). Dans certains vignobles, la pente naturelle du terrain a été réduite par la construction de terrasses soutenues par des murs.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Staying hydrated – not easy when it’s hot!

Heat and drought episodes during the growing season are becoming more frequent and more severe in many of the world’s grape‐growing regions

Volatile organic compounds investigation in Müller Thurgau wines obtained from vineyard treated with biochar

Volatile Organic Compounds (VOCs) are responsible for the flavor and aroma of a wine. The sensory qualities of the wines depend not only on grape intrinsic characteristics, but also on extrinsic factors including the soil composition. Previous studies have shown that the application of pyrogenic carbon (biochar) can lead to a change in soil parameters. For that reason, one of the goals of the ERDF funded project «WoodUp» is the characterization and reutilization of the locally produced biochar for agricultural purposes.

Zoning methods in relation to the plant

The characterization of the plant is the obliged pathway between the environment and the product. The responses of the plant amplify or reduce the variations of the environment, while determining directly the type and the quality of the products. These results are inscribed inside the Viticultural Terroir Unit (VTU). VTU is the complex interaction between the Basic Terroir Unit or BTU (interaction mesoclimate x soil/subsoil), the genotype (variety x rootstock), the management system, the oenological technologies. Thus, at the most complex level, a global biological triptych is found again : environment (source) x plant (structure) = produced and exchanged substances.