IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Abstract

Valpolicella is an Italian region famous for the production of high quality red wines. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Wines were produced with a standard protocol with Corvina and Corvinone grapes, the two main varieties of Valpolicella appellation. Grapes were harvested from five different vineyards located in two sub-regions within Valpolicella during three 2017, 2018 and 2019 vintages. Wines were submitted to accelerated aging treatment at 16°C and 40 °C for 30 days in epoxy resin sealed vials. Free volatile compounds and glycosidic precursors were analysed with gas chromatography mass spectrometry (GC-MS) analysis coupled with SPE and SPME extractions techniques.

Application of multivariate data analysis techniques to young wines allowed to identify volatile chemical patterns representing the unique aroma chemical signature of the geographical origin of each wine, regardless of vintages. In the case of aged wines, aroma signatures of individual geographical origin were preserved to a good extent after aging. In the case of Corvina, ageing slightly reduced the diversity associated with vineyard signature, conversely in Corvinone it seemed to have enhanced it. Terpenes were at the same times among the main drivers of vineyard signatures of both young and aged wines but also among the compounds most affected by ageing treatments. Highly relevant correlations were found between the decrease of some of the terpenes, mainly linalool, geraniol, β-citronellol and nerol, and the occurrence or increase of others like p-menthane-1,8-diol, 1,4- and 1,8-cineole. A significant influence of pH was found in the accumulation patterns of 1,8-cineole. These transformations involve odor- active compounds with implications for floral and balsamic attributes. Despite the deep changes occurring during aging, aged wines retained an aroma chemical signature that was characteristic of their geographical origin.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Luzzini Giovanni1, Slaghenaufi Davide1, Ugliano Maurizio1

1University of Verona

Contact the author

Keywords

Valpolicella, wine aging, terroir, Chemical signature of geographical identity, Red wine aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Anticipating consumer preference for low-alcohol wine: a machine learning analysis based on consumption habits and socio-demographics

The global wine consumption landscape is undergoing a transformation, marked by a growing trend towards reduced consumption and a preference for healthier lifestyles. In line with this shift, european union regulation (regulation eu 2021/2117) has recently redefined dealcoholized or partially dealcoholized wine within the wine category.

Exploring the physico-chemical modification of grape seed extracts to improve their clarifying effect in red wine

During winemaking, some byproducts are obtained, such as grape pomace, which represent 13% of winery byproducts.

Untargeted metabolomics to identify potential chemical markers responsible for the permissiveness of red wines against Brettanomyces bruxellensis

Red wines constitute the majority of the wines produced in Bordeaux. All along the winemaking process, many microorganisms may develop in wine. A lot of them are useful but a common defect found in wine is linked to the development of Brettanomyces bruxellensis, a yeast that produces volatile phenols. These molecules are responsible for an unwanted sensorial defect described as similar to “horse sweat”, “burnt plastic” or “leather”. It has been shown that while some wines are very permissive and easily contaminated, others are pretty resistant to Brettanomyces development. However, common parameters such as pH, alcohol or sugars composition cannot fully explain the differences observed in wine permissiveness.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

A generic method to analyze vine water deficit continuously

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.