IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Abstract

Valpolicella is an Italian region famous for the production of high quality red wines. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Wines were produced with a standard protocol with Corvina and Corvinone grapes, the two main varieties of Valpolicella appellation. Grapes were harvested from five different vineyards located in two sub-regions within Valpolicella during three 2017, 2018 and 2019 vintages. Wines were submitted to accelerated aging treatment at 16°C and 40 °C for 30 days in epoxy resin sealed vials. Free volatile compounds and glycosidic precursors were analysed with gas chromatography mass spectrometry (GC-MS) analysis coupled with SPE and SPME extractions techniques.

Application of multivariate data analysis techniques to young wines allowed to identify volatile chemical patterns representing the unique aroma chemical signature of the geographical origin of each wine, regardless of vintages. In the case of aged wines, aroma signatures of individual geographical origin were preserved to a good extent after aging. In the case of Corvina, ageing slightly reduced the diversity associated with vineyard signature, conversely in Corvinone it seemed to have enhanced it. Terpenes were at the same times among the main drivers of vineyard signatures of both young and aged wines but also among the compounds most affected by ageing treatments. Highly relevant correlations were found between the decrease of some of the terpenes, mainly linalool, geraniol, β-citronellol and nerol, and the occurrence or increase of others like p-menthane-1,8-diol, 1,4- and 1,8-cineole. A significant influence of pH was found in the accumulation patterns of 1,8-cineole. These transformations involve odor- active compounds with implications for floral and balsamic attributes. Despite the deep changes occurring during aging, aged wines retained an aroma chemical signature that was characteristic of their geographical origin.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Luzzini Giovanni1, Slaghenaufi Davide1, Ugliano Maurizio1

1University of Verona

Contact the author

Keywords

Valpolicella, wine aging, terroir, Chemical signature of geographical identity, Red wine aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Antifungal and Laccase-Suppressing Activity of Phenolic Compounds and Their Oxidation Products on Grey Mold-Fungus Botrytis cinerea

Botrytis cinerea causes grey mold that results in severe problems for wine makers worldwide. Infected grapes lead to quality deterioration including formation of off-flavors or browning. The latter is caused by the enzyme laccase which is capable of oxidizing a wide range of phenolic compounds. Since the use of conventional pesticides is associated with many concerns of consumers and authorities regarding environmental and health related issues and may result in fungicide resistance, the development of green alternatives is gaining more attention.

Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Dans le cadre de recherches sur la mise en évidence et le déterminisme d’un «effet terroir »un réseau de parcelles du cépage Cabernet Franc greffé sur S04, a été suivi de 1979 à 1990 en Val de Loire (A.O.C. Saumur-Champigny, Chinon et Bourgueil). Des analyses chimiques (N,P, K, Ca, Mg, Fe, Mn, Zn) ont été réalisées sur le sol, les feuilles au stade véraison, les moûts en cours de maturation et à la vendange et enfin sur le vin, pour 18 sites (répartis dans 12unités terroirs de base) et 7 millésimes différents.

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Assessment of the impact of actions in the vineyard and its surrounding environment on biodiversity in Rioja Alavesa (Spain)

Traditional viticulture areas have experienced in the last decades an intensification of field practices, linked to an increased use of fertilisers and phytosanitary products, and to a more intensive mechanization and uniformization of the landscape. This change in management has sometimes led to higher rates of soil erosion andloss of soil structure, fertility decline, groundwater contamination, and to an increased pressure of pests and diseases. Additionally, intensification usually leads to a simplification of landscapes, of particular concern in prestigious wine grape regions where the economical revenue encourages the conversion of land use from natural habitats to high value wine grape production. To revert this trend, it is necessary that growers implement actions that promote biodiversity in their vineyards. The aim of this study is to assess the impact of the implementation of cover crops, vegetational corridors, dry stone walls and vineyard biodiversity hotspots estimated through the study of arthropods. The work has been carried out in four vineyards in Rioja Alavesa belonging to Ostatu winery, where these infrastructures were implemented in 2020. The presence and diversity of arthropods was studied by capturing them at different times in the season and at different distances from the infrastructure using pit-fall traps in the soil and yellow, white and blue chromatic traps at the canopy level. This is a preliminary study in which all adult insects were sorted to the taxonomic level of order and Coleoptera were classified to morphospecies. The results obtained show that there is a relationship between the basic characteristics of the vineyard and the arthropods captured, with a positive effect, although also dependent on the vineyard, of the presence of infrastructure.

Text mining of wine reviews to investigate quality markers of ‘Nebbiolo’ wines from Valtellina

In Valtellina zone (north Italy), the winemaking of ‘Nebbiolo’ grapes leads to the production of two main wine types: classic red wines from fresh grapes, usually classified as Valtellina Superiore DOCG (mandatory oak aging) or Rosso di Valtellina DOC, and the Sforzato di Valtellina DOCG, which is produced using withered grapes according to traditional product specification and subjected to mandatory oak aging process. The withering process influences grape chemical composition and, in turn, the wine sensory profile, which is strongly linked to the wine quality and typicity perceived by consumers.