IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Varietal volatile patterns of Italian white wines

Varietal volatile patterns of Italian white wines

Abstract

Aroma diversity is one of the most important features in the expression of the varietal and geographic identity and sensory uniqueness of a wine. Italy has one of the largest ampelographic heritages of the world, with more than five hundred different varieties. Among them, many are used for the production of dry still white wines, many classified as Protected Designation of Origins and therefore produced in specific geographical areas with well-defined grape varieties. Chemical and sensory characteristics of the aroma of these wines have never been systematically studied, and the relative diversity has never been described and classified. During this study, which is part of the activities of the D-Wines research consortium, we considered 249 samples of different mono-varietal white wine types (Albana, Arneis, Cortese, Erbaluce, Garganega, Gewurztraminer, Greco di Tufo, Falanghina, Fiano, Lugana, Müller Thurgau, Nosiola, Pallagrello, Pinot Grigio, Ribolla Gialla, Verdicchio, Vermentino, Vernaccia di S. Gimignano) corresponding to major Italian PDOs. Volatile compounds primarily associated with varietal and geographical origin, namely terpenes, norisoprenoids, sulphur compounds and methyl-salicylate, have been analysed by means of different SPME-GC-MS techniques. Multivariate analysis and Hierarchical Cluster Analysis of volatile compounds showed a complex segmentation in which each wine type showed patterns of chemical compounds with similarities within the group but which at the same time partly overlapped with the patterns of other wine types. Despite this, almost all compounds showed significant differences according to wine type. We found that Vermentino was characterized by high concentrations of terpenes and in particular of linalool, whereas for other wine types either sulfur compounds, such as DMS, or norisoprenoids, such as β-damascenone, were found to be significantly discriminant. Similarities between wines from the same grape variety but different geographical origin were also detected, as in the case of Verdicchio and Lugana, both characterized by a higher methyl salicylate content.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Ugliano Maurizio1, Luzzini Giovanni1, Slaghenaufi Davide1, Carlin Silvia2, Curioni Andrea3, Marangon Matteo3, Mattivi Fulvio4, Moio Luigi5, Parpinello Giuseppina6, Piombino Paola5, Rio Segade Susana7, Rolle Luca7 and Versari Andrea6

1Department of Biotechnology, University of Verona
2Metabolomics Unit, Research and Innovation Centre Fondazione Edmund Mach
3Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova
4Centre Agriculture Food Environment (C3A), University of Trento, Italy
5Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino, Italy
6Department of Agricultural and Food Sciences, University of Bologna, Italy
7Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Italy

Contact the author

Keywords

White wine, Protected Designation of Origin, Geographic identity, Varietal identity, Wine aging

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The influence of external factors on the alcoholic fermentation of wine yeasts

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains

Aromatic complexity in Verdicchio wines: a case study

In this video recording of the IVES science meeting 2021, Fulvio Mattivi (Fondazione Edmund Mach, Centro Ricerca ed Innovazione, San Michele all’Adige, Italy) speaks about the effects of water deficit on secondary metabolites in grapes and wines. This presentation is based on an original article accessible for free on OENO One.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

How does aromatic composition of red wines, resulting from varieties adapted to climate change, modulate fruity aroma?

One of the major issues for the wine sector is the impact of climate change linked to the increasing temperatures which affects physicochemical parameters of the grape varieties planted in Bordeaux vineyard and consequently, the quality of wine. In some varietals, the attenuation of their fresh fruity character is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive strategy on climate change, some winegrowers have initiated changes in the Bordeaux blend of vine varieties [2]. This study intends to explore the fruitiness in wines produced from grape varieties adapted to the future climate of Bordeaux. 10 commercial single–varietal wines from 2018 vintage made from the main grape varieties in the Bordeaux region (Cabernet franc, Cabernet-Sauvignon and Merlot) as well as from indigenous grape varieties from the Mediterranean basin, such as Cyprus (Yiannoudin), France (Syrah), Greece (Agiorgitiko and Xinomavro), Portugal (Touriga Nacional) and Spain (Garnacha and Tempranillo), were selected among 19 samples using sensory descriptive analyses. Both sensory and instrumental analyses were coupled, to investigate their fruity aroma expression. For sensory analysis, samples were prepared from wine, using a semi preparative HPLC method which preserves wine aroma and isolates fruity characteristics in 25 specific fractions [3,4]. Fractions of interest with intense fruity aromas were sensorially selected for each wine by a trained panel and mixed with ethanol and microfiltered water to obtain fruity aromatic reconstitutions (FAR) [5]. A free sorting task was applied to categorize FAR according to their similarities or dissimilarities, and different clusters were highlighted. Instrumental analysis of the different FAR and wines demonstrated variations in their molecular composition. Results obtained from sensory and gas chromatography analysis enrich the knowledge of the fruity expression of red wines from “new” grape varieties opening up new perspectives in wine technology, including blending, thus providing new tools for producers.

Chemical and colorimetric study of copigmentation between malvidin-3-O-glucoside and wine polyphenols and polysaccharides

The objective of this work was to perform a colorimetric study of the copigmentation between malvidin-3-O-glucoside, one of the main anthocyanins in red wines,