IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Varietal volatile patterns of Italian white wines

Varietal volatile patterns of Italian white wines

Abstract

Aroma diversity is one of the most important features in the expression of the varietal and geographic identity and sensory uniqueness of a wine. Italy has one of the largest ampelographic heritages of the world, with more than five hundred different varieties. Among them, many are used for the production of dry still white wines, many classified as Protected Designation of Origins and therefore produced in specific geographical areas with well-defined grape varieties. Chemical and sensory characteristics of the aroma of these wines have never been systematically studied, and the relative diversity has never been described and classified. During this study, which is part of the activities of the D-Wines research consortium, we considered 249 samples of different mono-varietal white wine types (Albana, Arneis, Cortese, Erbaluce, Garganega, Gewurztraminer, Greco di Tufo, Falanghina, Fiano, Lugana, Müller Thurgau, Nosiola, Pallagrello, Pinot Grigio, Ribolla Gialla, Verdicchio, Vermentino, Vernaccia di S. Gimignano) corresponding to major Italian PDOs. Volatile compounds primarily associated with varietal and geographical origin, namely terpenes, norisoprenoids, sulphur compounds and methyl-salicylate, have been analysed by means of different SPME-GC-MS techniques. Multivariate analysis and Hierarchical Cluster Analysis of volatile compounds showed a complex segmentation in which each wine type showed patterns of chemical compounds with similarities within the group but which at the same time partly overlapped with the patterns of other wine types. Despite this, almost all compounds showed significant differences according to wine type. We found that Vermentino was characterized by high concentrations of terpenes and in particular of linalool, whereas for other wine types either sulfur compounds, such as DMS, or norisoprenoids, such as β-damascenone, were found to be significantly discriminant. Similarities between wines from the same grape variety but different geographical origin were also detected, as in the case of Verdicchio and Lugana, both characterized by a higher methyl salicylate content.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Ugliano Maurizio1, Luzzini Giovanni1, Slaghenaufi Davide1, Carlin Silvia2, Curioni Andrea3, Marangon Matteo3, Mattivi Fulvio4, Moio Luigi5, Parpinello Giuseppina6, Piombino Paola5, Rio Segade Susana7, Rolle Luca7 and Versari Andrea6

1Department of Biotechnology, University of Verona
2Metabolomics Unit, Research and Innovation Centre Fondazione Edmund Mach
3Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova
4Centre Agriculture Food Environment (C3A), University of Trento, Italy
5Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino, Italy
6Department of Agricultural and Food Sciences, University of Bologna, Italy
7Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Italy

Contact the author

Keywords

White wine, Protected Designation of Origin, Geographic identity, Varietal identity, Wine aging

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements.

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

A global and regional study on winegrowers’ perceptions and adaptations to climate change

Aim: The aim of this study was to explore the current and future state of the wine sector in the context of climate change, where the goal was to obtain greater understanding on winegrowers’ perceptions and adaptations to a changing climate and its associated impacts. The study sought to provide both a global and regional perspective on these issues.

Sustainable fertilisation of the vineyard in Galicia (Spain)

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.

Influence of different environments on grape phenolic and aromatic composition of threeclone of ‘nebbiolo’ (Vitis Vinifera L.)

The interaction between cultivar and growing environment is the base of wine quality and typicality. In recent time the behaviour of different clones within the same cultivar became another fundamental factor influencing the enological result. In order to clarify cultivar/clone/environment relations, a trial was carried out in 2008 studying the performances of three clones of ‘Nebbiolo’, grown in different environments: south-east Piedmont (hilly and characterized by a loamy and alkaline soil) and north-east Piedmont (a plain area characterized by a sandy and acidic soil).