IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Varietal volatile patterns of Italian white wines

Varietal volatile patterns of Italian white wines

Abstract

Aroma diversity is one of the most important features in the expression of the varietal and geographic identity and sensory uniqueness of a wine. Italy has one of the largest ampelographic heritages of the world, with more than five hundred different varieties. Among them, many are used for the production of dry still white wines, many classified as Protected Designation of Origins and therefore produced in specific geographical areas with well-defined grape varieties. Chemical and sensory characteristics of the aroma of these wines have never been systematically studied, and the relative diversity has never been described and classified. During this study, which is part of the activities of the D-Wines research consortium, we considered 249 samples of different mono-varietal white wine types (Albana, Arneis, Cortese, Erbaluce, Garganega, Gewurztraminer, Greco di Tufo, Falanghina, Fiano, Lugana, Müller Thurgau, Nosiola, Pallagrello, Pinot Grigio, Ribolla Gialla, Verdicchio, Vermentino, Vernaccia di S. Gimignano) corresponding to major Italian PDOs. Volatile compounds primarily associated with varietal and geographical origin, namely terpenes, norisoprenoids, sulphur compounds and methyl-salicylate, have been analysed by means of different SPME-GC-MS techniques. Multivariate analysis and Hierarchical Cluster Analysis of volatile compounds showed a complex segmentation in which each wine type showed patterns of chemical compounds with similarities within the group but which at the same time partly overlapped with the patterns of other wine types. Despite this, almost all compounds showed significant differences according to wine type. We found that Vermentino was characterized by high concentrations of terpenes and in particular of linalool, whereas for other wine types either sulfur compounds, such as DMS, or norisoprenoids, such as β-damascenone, were found to be significantly discriminant. Similarities between wines from the same grape variety but different geographical origin were also detected, as in the case of Verdicchio and Lugana, both characterized by a higher methyl salicylate content.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Ugliano Maurizio1, Luzzini Giovanni1, Slaghenaufi Davide1, Carlin Silvia2, Curioni Andrea3, Marangon Matteo3, Mattivi Fulvio4, Moio Luigi5, Parpinello Giuseppina6, Piombino Paola5, Rio Segade Susana7, Rolle Luca7 and Versari Andrea6

1Department of Biotechnology, University of Verona
2Metabolomics Unit, Research and Innovation Centre Fondazione Edmund Mach
3Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova
4Centre Agriculture Food Environment (C3A), University of Trento, Italy
5Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino, Italy
6Department of Agricultural and Food Sciences, University of Bologna, Italy
7Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Italy

Contact the author

Keywords

White wine, Protected Designation of Origin, Geographic identity, Varietal identity, Wine aging

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Clustering wine aromatic composition of Vitis vinifera grapevine varieties

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Amongst several changes in viticultural practices, replacing some of the planting material (i.e clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity.

Understanding the physiological responses of Sauvignon blanc vines to sequential extreme weather events: implications for vineyard management in a changing climate

Climate plays a predominant role in vines’ growth and productivity and several environmental variables are already known to pose challenges to grapevine production and the horticultural industry as a whole. In this context, a number of extreme weather events already occurring and expected to occur in the next decades even more frequently and with higher magnitude results from current climate change scenario. The aim of this study was to examine the physiological responses of roots, leaves, and berries of Vitis vinifera cv. Sauvignon blanc to consecutive and combined stressors simulated in a semi-controlled environment.

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

Étude des relations sol-vigne sur le vignoble de Côte Rôtie

La topographie du vignoble de Côte Rôtie, la prédominance de la non culture ainsi que la structure très légère des sols amènent les vignerons à s’interroger sur l’entretien du sol, la conduite de la fertilisation de leurs parcelles ainsi que sur le développement racinaire de la vigne.

Potential use of the yeast Starmerella bacillaris as a sustainable biocontrol agent against gray mold disease in viticulture

Pest biocontrol strategies are gaining attention as eco-friendly alternatives to the use of synthetic pesticides, including in viticulture.