IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Varietal volatile patterns of Italian white wines

Varietal volatile patterns of Italian white wines

Abstract

Aroma diversity is one of the most important features in the expression of the varietal and geographic identity and sensory uniqueness of a wine. Italy has one of the largest ampelographic heritages of the world, with more than five hundred different varieties. Among them, many are used for the production of dry still white wines, many classified as Protected Designation of Origins and therefore produced in specific geographical areas with well-defined grape varieties. Chemical and sensory characteristics of the aroma of these wines have never been systematically studied, and the relative diversity has never been described and classified. During this study, which is part of the activities of the D-Wines research consortium, we considered 249 samples of different mono-varietal white wine types (Albana, Arneis, Cortese, Erbaluce, Garganega, Gewurztraminer, Greco di Tufo, Falanghina, Fiano, Lugana, Müller Thurgau, Nosiola, Pallagrello, Pinot Grigio, Ribolla Gialla, Verdicchio, Vermentino, Vernaccia di S. Gimignano) corresponding to major Italian PDOs. Volatile compounds primarily associated with varietal and geographical origin, namely terpenes, norisoprenoids, sulphur compounds and methyl-salicylate, have been analysed by means of different SPME-GC-MS techniques. Multivariate analysis and Hierarchical Cluster Analysis of volatile compounds showed a complex segmentation in which each wine type showed patterns of chemical compounds with similarities within the group but which at the same time partly overlapped with the patterns of other wine types. Despite this, almost all compounds showed significant differences according to wine type. We found that Vermentino was characterized by high concentrations of terpenes and in particular of linalool, whereas for other wine types either sulfur compounds, such as DMS, or norisoprenoids, such as β-damascenone, were found to be significantly discriminant. Similarities between wines from the same grape variety but different geographical origin were also detected, as in the case of Verdicchio and Lugana, both characterized by a higher methyl salicylate content.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Ugliano Maurizio1, Luzzini Giovanni1, Slaghenaufi Davide1, Carlin Silvia2, Curioni Andrea3, Marangon Matteo3, Mattivi Fulvio4, Moio Luigi5, Parpinello Giuseppina6, Piombino Paola5, Rio Segade Susana7, Rolle Luca7 and Versari Andrea6

1Department of Biotechnology, University of Verona
2Metabolomics Unit, Research and Innovation Centre Fondazione Edmund Mach
3Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova
4Centre Agriculture Food Environment (C3A), University of Trento, Italy
5Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino, Italy
6Department of Agricultural and Food Sciences, University of Bologna, Italy
7Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Italy

Contact the author

Keywords

White wine, Protected Designation of Origin, Geographic identity, Varietal identity, Wine aging

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

Effect of potential crop on vine water constraint

It is important to quantify the effect of potential crop on vine water constraint in order to adapt vine-growing consulting and vine management to the Mediterranean climate conditions

Carbon footprint as a function of inter-annual climate variability in Uruguayan viticulture production systems

Climate change, driven by greenhouse gas (GHG) emissions, is one of humanity’s most significant environmental challenges.