IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of fungal and bacterial laccases for the reduction of ochratoxin A content in model wine

Study of fungal and bacterial laccases for the reduction of ochratoxin A content in model wine

Abstract

Ochratoxin A (OTA) is a mycotoxin produced by several filamentous fungi infecting grape bunches (Penicillium and Aspergillus spp.), this toxin pass to must when grapes are crushed and later it is found in wine. Following the evaluations of the toxicity of OTA, European Commission Regulations have been promulgated introducing upper limits for OTA concentrations in various commodities (cereals, cereal products, dried vine fruit, coffee, wine, grape juice, baby foods and dietary foods for special medical purposes). The use of fungal (Plerotus eryngii, Pleurotus pulmonarius and Trametes versicolor), and bacterial (Streptomyces coelicor) laccases permits to decrease Ochratoxin A, and other mycotoxins in buffer systems containing various natural and artificial redox mediators. Recently several laccases from lactic acid bacteria of wine and other foods have been isolated, identified and characterized. The aim of this research was to study the effect of synthetic and natural mediators on the degradation of Ochratoxin A (OTA) using laccases from Botrytis cinerea (fungal) and lactic acid bacteria. Studies were carried out in acetate buffer and model wine and evaluated the effect of different oenological factors (pH, SO2 and ethanol content). Quantification of OTA was accomplished by LC-QTOF analysis. Results showed that fungal and bacterial laccases alone were not effective in decreasing OTA content and the presence of redox mediators was required to achieve some reduction of OTA concertation, both in buffer and model wine.  Monomeric flavanols catechin and epicatechin were the most effective mediators among those assayed, followed by ferulic acid. Caftaric acid and the flavonols quercetin and quercetin-3-O-rutinoside were almost ineffective as mediators. SO2 at a concentration of 30 mg/L was able to completely prevent OTA degradation. These preliminary results confirmed the activity of laccase enzymes against ochratoxin A and provide knowledge on the effects of natural redox mediators suggesting new biological alternative strategies to eliminate undesirable substances present in wine.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gómez-Alonso Sergio1, Martínez Tania Paniagua1, Pérez-Navarro José2, Olmeda Isidoro3, Pardo Isabel3, Ferrer Sergi3, Canals Joan Miquel4 and Zamora Fernando4

1Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha
2Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha
3Faculty of Biological Sciences, University of Valencia
4Faculty of Oenology, Rovira i Virgili University

Contact the author

Keywords

ochratoxin A, laccase, fungal, lactic acid bacteria, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Il vino nobile di Montepulciano

C’è grande attenzione al rapporto tra zonazione e marketing. Mi sembra però che ci sia anco­ra oggi un salto fra le pratiche di analisi del terreno e di deterrninazione di quello che potremo definire “cru” e quello che può essere la sua utilizzazione rispetto ai consumatori finali.

Gamay And Gamaret Winemaking Processes Using Stems: Impact On The Wine Aromatic Composition.

Stems may bring various benefits to the wine such as alcoholic reduction, color protection or improvement of the tannic intensity.

Mathematical modeling of fermentation kinetics: a tool to better understand interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in mixed cultures

Nowadays the use of Torulaspora delbrueckii is more and more common in winemaking. However, its behavior in presence of Saccharomyces cerevisiae is not always predictable.

Sensory profile: a tool to characterize originality of wines produced without sulfites

A trend to reduce chemical inputs in wines exists, especially sulfur dioxide (SO2). This additive is widely used due to its antioxidant, antiseptic and antioxidasic properties. During without sulfites vinification, bioprotection by adding yeast on harvest could be a sulfites alternative. With extension of this wine market, sensory impact linked to sulfites absence and/or sulfites alternative should be evaluated. That’s what this approach proposes to do, focusing on sensory characteristics of wines produced with or without SO2 addition during the winemaking process. METHODS: Wines were elaborated from Merlot grapes of two maturity levels according to three modalities: SO2, without SO2 and bioprotection on harvest (mix of Torulaspora delbrueckii and Metschnikowia pulcherrima). SO2 modality was sulfited throughout the winemaking and aging processes whether other modalities received any addition. After two years of aging, sensory studies were carried out with a specific panel for one month. First, descriptors were generated to differentiate the wines, then panelists were trained on these specific descriptors for five sessions and finally wines sensory profiles were elaborated

Impact of acidification by fumaric acid at vatting on Cabernet-Sauvignon wine during winemaking

Acidity of grape berries is lowered due to climate changes (1), resulting in musts and wines with higher pHs. These higher pHs induce microbiological instability