IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of fungal and bacterial laccases for the reduction of ochratoxin A content in model wine

Study of fungal and bacterial laccases for the reduction of ochratoxin A content in model wine

Abstract

Ochratoxin A (OTA) is a mycotoxin produced by several filamentous fungi infecting grape bunches (Penicillium and Aspergillus spp.), this toxin pass to must when grapes are crushed and later it is found in wine. Following the evaluations of the toxicity of OTA, European Commission Regulations have been promulgated introducing upper limits for OTA concentrations in various commodities (cereals, cereal products, dried vine fruit, coffee, wine, grape juice, baby foods and dietary foods for special medical purposes). The use of fungal (Plerotus eryngii, Pleurotus pulmonarius and Trametes versicolor), and bacterial (Streptomyces coelicor) laccases permits to decrease Ochratoxin A, and other mycotoxins in buffer systems containing various natural and artificial redox mediators. Recently several laccases from lactic acid bacteria of wine and other foods have been isolated, identified and characterized. The aim of this research was to study the effect of synthetic and natural mediators on the degradation of Ochratoxin A (OTA) using laccases from Botrytis cinerea (fungal) and lactic acid bacteria. Studies were carried out in acetate buffer and model wine and evaluated the effect of different oenological factors (pH, SO2 and ethanol content). Quantification of OTA was accomplished by LC-QTOF analysis. Results showed that fungal and bacterial laccases alone were not effective in decreasing OTA content and the presence of redox mediators was required to achieve some reduction of OTA concertation, both in buffer and model wine.  Monomeric flavanols catechin and epicatechin were the most effective mediators among those assayed, followed by ferulic acid. Caftaric acid and the flavonols quercetin and quercetin-3-O-rutinoside were almost ineffective as mediators. SO2 at a concentration of 30 mg/L was able to completely prevent OTA degradation. These preliminary results confirmed the activity of laccase enzymes against ochratoxin A and provide knowledge on the effects of natural redox mediators suggesting new biological alternative strategies to eliminate undesirable substances present in wine.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gómez-Alonso Sergio1, Martínez Tania Paniagua1, Pérez-Navarro José2, Olmeda Isidoro3, Pardo Isabel3, Ferrer Sergi3, Canals Joan Miquel4 and Zamora Fernando4

1Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha
2Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha
3Faculty of Biological Sciences, University of Valencia
4Faculty of Oenology, Rovira i Virgili University

Contact the author

Keywords

ochratoxin A, laccase, fungal, lactic acid bacteria, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring the genomic diversity of yeast involved in spontaneous fermentation. from studies to select autochthonous strains of different italian’s wineries to extensive phylogenetic survey about the italians’ population of s. cerevisiae

Modern winemakers must ensure effective alcoholic fermentation without losing the intrinsic biodiversity of the different oenological contexts. In this sense, the population of saccharomyces cerevisiae characteristic of wineries that traditionally do not use selected yeasts can represent an interesting reservoir of biodiversity.

Identification of QTLS for sunburn resilience in grapevine berries

Context and purpose of the study – Grape sunburn is an abiotic stress response triggered by high temperatures.

Exploiting the diversity in spent yeast for its valorisation towards producing yeast-derived processing aids

In view of sustainability and zero-waste initiatives, the valorisation of sidestreams is a key emerging topic in the wine industry.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

The climate is the environmental factor that contributes with greater weight in the variability of the yield and the composition of the grape, therefore, it is key in the determination of the typicity of the product. Of the environmental factors, the evolution of water availability conditions, among other things, the biochemical evolution of the compounds of the grape and the type of wine to be elaborated. An integrating parameter of the hydric state of the plant is the carbon isotopic composition (δ13C). This indicator is a useful parameter to characterize the water status during the maturation period and estimate the transpiration efficiency or water use efficiency (EUA) in the vine.