IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of fungal and bacterial laccases for the reduction of ochratoxin A content in model wine

Study of fungal and bacterial laccases for the reduction of ochratoxin A content in model wine

Abstract

Ochratoxin A (OTA) is a mycotoxin produced by several filamentous fungi infecting grape bunches (Penicillium and Aspergillus spp.), this toxin pass to must when grapes are crushed and later it is found in wine. Following the evaluations of the toxicity of OTA, European Commission Regulations have been promulgated introducing upper limits for OTA concentrations in various commodities (cereals, cereal products, dried vine fruit, coffee, wine, grape juice, baby foods and dietary foods for special medical purposes). The use of fungal (Plerotus eryngii, Pleurotus pulmonarius and Trametes versicolor), and bacterial (Streptomyces coelicor) laccases permits to decrease Ochratoxin A, and other mycotoxins in buffer systems containing various natural and artificial redox mediators. Recently several laccases from lactic acid bacteria of wine and other foods have been isolated, identified and characterized. The aim of this research was to study the effect of synthetic and natural mediators on the degradation of Ochratoxin A (OTA) using laccases from Botrytis cinerea (fungal) and lactic acid bacteria. Studies were carried out in acetate buffer and model wine and evaluated the effect of different oenological factors (pH, SO2 and ethanol content). Quantification of OTA was accomplished by LC-QTOF analysis. Results showed that fungal and bacterial laccases alone were not effective in decreasing OTA content and the presence of redox mediators was required to achieve some reduction of OTA concertation, both in buffer and model wine.  Monomeric flavanols catechin and epicatechin were the most effective mediators among those assayed, followed by ferulic acid. Caftaric acid and the flavonols quercetin and quercetin-3-O-rutinoside were almost ineffective as mediators. SO2 at a concentration of 30 mg/L was able to completely prevent OTA degradation. These preliminary results confirmed the activity of laccase enzymes against ochratoxin A and provide knowledge on the effects of natural redox mediators suggesting new biological alternative strategies to eliminate undesirable substances present in wine.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gómez-Alonso Sergio1, Martínez Tania Paniagua1, Pérez-Navarro José2, Olmeda Isidoro3, Pardo Isabel3, Ferrer Sergi3, Canals Joan Miquel4 and Zamora Fernando4

1Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha
2Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha
3Faculty of Biological Sciences, University of Valencia
4Faculty of Oenology, Rovira i Virgili University

Contact the author

Keywords

ochratoxin A, laccase, fungal, lactic acid bacteria, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

A study on the oenological potentiality of the territory of a cooperative winery in Valpolicella (Italy)

A 3-year zoning study promoted by the Cooperative Winery Valpolicella (Negrar, Verona, Italy) was carried out on a wine territory of about 500 ha.

Revealing the aroma profile of Greek wines from indigenous grape cultivars

The indigenous Greek grape varieties Assyrtiko, Malagousia, Moschofilero and Roditis are used to produce white wines that are attracting the interest of wine producers and consumers due to their aromatic characteristics [1]. In addition, the Agiorgitiko and Xinomavro varieties are Greece’s most prominent red grape varieties.

Understanding vine response to Mediterranean summer stress for the development of adaptation strategies – in the kaolin case

In this video recording of the IVES science meeting 2023, Sara Bernardo (CITAB, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal) speaks about understanding vine response to Mediterranean summer stress for the development of adaptation strategies – in the kaolin case. This presentation is based on an original article accessible for free on OENO One.

Use of sensors/biosensors for detection of food safety parameters in wine

The implementation of food safety assurance systems in wineries involves ensuring that the wines produced do not pose a risk to consumer health and are therefore free from harmful substances, such as those that may be incorporated during the production process (pesticides, additives, etc.), allergens or mycotoxins.

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).