IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of fungal and bacterial laccases for the reduction of ochratoxin A content in model wine

Study of fungal and bacterial laccases for the reduction of ochratoxin A content in model wine

Abstract

Ochratoxin A (OTA) is a mycotoxin produced by several filamentous fungi infecting grape bunches (Penicillium and Aspergillus spp.), this toxin pass to must when grapes are crushed and later it is found in wine. Following the evaluations of the toxicity of OTA, European Commission Regulations have been promulgated introducing upper limits for OTA concentrations in various commodities (cereals, cereal products, dried vine fruit, coffee, wine, grape juice, baby foods and dietary foods for special medical purposes). The use of fungal (Plerotus eryngii, Pleurotus pulmonarius and Trametes versicolor), and bacterial (Streptomyces coelicor) laccases permits to decrease Ochratoxin A, and other mycotoxins in buffer systems containing various natural and artificial redox mediators. Recently several laccases from lactic acid bacteria of wine and other foods have been isolated, identified and characterized. The aim of this research was to study the effect of synthetic and natural mediators on the degradation of Ochratoxin A (OTA) using laccases from Botrytis cinerea (fungal) and lactic acid bacteria. Studies were carried out in acetate buffer and model wine and evaluated the effect of different oenological factors (pH, SO2 and ethanol content). Quantification of OTA was accomplished by LC-QTOF analysis. Results showed that fungal and bacterial laccases alone were not effective in decreasing OTA content and the presence of redox mediators was required to achieve some reduction of OTA concertation, both in buffer and model wine.  Monomeric flavanols catechin and epicatechin were the most effective mediators among those assayed, followed by ferulic acid. Caftaric acid and the flavonols quercetin and quercetin-3-O-rutinoside were almost ineffective as mediators. SO2 at a concentration of 30 mg/L was able to completely prevent OTA degradation. These preliminary results confirmed the activity of laccase enzymes against ochratoxin A and provide knowledge on the effects of natural redox mediators suggesting new biological alternative strategies to eliminate undesirable substances present in wine.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gómez-Alonso Sergio1, Martínez Tania Paniagua1, Pérez-Navarro José2, Olmeda Isidoro3, Pardo Isabel3, Ferrer Sergi3, Canals Joan Miquel4 and Zamora Fernando4

1Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha
2Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha
3Faculty of Biological Sciences, University of Valencia
4Faculty of Oenology, Rovira i Virgili University

Contact the author

Keywords

ochratoxin A, laccase, fungal, lactic acid bacteria, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Ancient and recent construction of Terroirs

The local wine as an area identified and recognized is a complex socio-historical reality that calls an effort of observation and theoretical reflection using various social sciences

Viñedos de la D.O. Ribeira Sacra: heterogeneidad varietal y sanitaria

La D.O. Ribeira Sacra (Galicia, N.O. de España) se distribuye a lo largo de las riberas de los ríos Miño y Sil. Su característica mas destacada son las fuertes pendientes. Desde 1990 se estudia el estado

Fertilization with Seaweed (Laminaria japonica) on the characteristics of the bunch and the quality of the grape must of ‘Cabernet Sauvignon’

The objective of the present work was to study the influence of the foliar application of seaweed (Laminaria japonica), on the bunch and on the must in the ‘Cabernet Sauvignon’ grape. The experiment was carried out in the years 2021/2022, in a 21-year-old commercial vineyard, in the municipality of “Dom Pedrito” – “Rio Grande do Sul” (RS). A completely randomized experimental design was used, with 4 treatments and 4 replications (7 plants per replication). The treatments were: T1- control treatment; T2- Exal Powder 5 g L-1; T3- Hidro Exal 15 ml L-1; T4- Exal Powder 5 g L-1+ Hidro Exal 15 ml L-1.

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles.

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents.