IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Profiling the Metschnikowia yeast populations in spontaneous fermentation of Amarone della Valpolicella

Profiling the Metschnikowia yeast populations in spontaneous fermentation of Amarone della Valpolicella

Abstract

The microbial diversity during spontaneous grape must fermentation has a determinant influence on the chemical composition and sensory properties of wine. Therefore, yeast diversity is an important target to better understand wine regionality. Hence, the aim of this study was to isolate, identify, and characterize the yeast core microbiota in grape must during the early stage of lab-scale spontaneous fermentation of withered grapes to produce Amarone della Valpolicella wine (Verona, Italy). At the end of the withering process, chosen grape bunches, mainly of Corvina and Corvinone varieties, were pressed and transferred to glass bottles in the laboratory for spontaneous fermentation (SF). To investigate the impact of grape washing on microbial removal, one batch of grapes was submitted to a washing step in aqueous solution (1% w/v citric acid) at the winery before pressing. Microbial composition was investigated during the first five days of fermentation, a stage known for greater variability of microorganisms, isolating yeast colonies from WL agar plates. Overall, 67 colonies were purified and the partial 26S rRNA gene sequencing allowed the identification of six different species, among which Metschnikowia spp. was prevalent. Indeed, 42 isolates of this genus were obtained, deriving from musts of washed grapes (22) and from non-washed grapes (20). Interestingly, the washing step did not impact on the presence of pulcherrimin-producing isolates. A more in-depth characterization was carried out on those 42 isolates, as Metschnikowia spp. are acknowledged to contribute to the diversity and complexity of wine taste. A strain level analysis was performed by means of fingerprinting profiles (primer (GTG)5) and phenotypic characterization (sulfite reductase, β-glucosidase, and esterase enzymatic activities). 11 genotypic profiles and 6 different phenotypic combinations were observed among the 42 isolates. Considering both approaches, it was possible to define the presence of 19 strains of Metschnikowia spp., most of them isolated only once, but some present in both washed and non-washed grapes, throughout the whole sampling period. Results obtained in this study shed light on the native Metschnikowia yeast community of washed and non-washed withered grapes, that is composed by diverse strains, and highlight that this biodiversity can be underestimated if only genotypic or phenotypic properties are investigated. This diversity represents a reservoir of strains with enological/pro technological significance that could be applied and combined to improve the sensory characteristics of wine and fermented beverages. 

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Martelli Francesco1, Checchia Ilaria1, Troiano Eleonora1, Gatto Veronica1, Leal Binati Renato1, Torriani Sandra1 and Felis Giovanna E.1

1Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

non-Saccharomyces; microbial diversity; spontaneous fermentation; wine quality; grape washing

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Evaluation of Saccharomyces cerevisiae strains from honey by-products by their performance as starters in the wine industry

AIM: Recent studies on yeast ecology of non-oenological niches have highlighted the ability of some Saccharomyces cerevisiae yeasts to ferment grape must [1]

Exploring typicity in Nebbiolo wines across different areas through chemical analysis

“Nebbiolo” is a red winegrape variety well known to produce monovarietal wines in Piemonte, Valle d’Aosta, and Lombardia regions, taking part to 7 DOCG (Denominazione di Origine Controllata e Garantita) and 22 DOC (Denominazione di Origine Controllata) protected designations of origin (PDO) [1,2].

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Terroirs and legal protection

Le concept AOC permet, par une délimitation précise, la mise en valeur de terroirs particulièrement adaptés à la viticulture. Seuls les terroirs ainsi identifiés peuvent produire des vins portant le nom de l’AOC. Le nom de cette AOC ne peut être utilisé que pour des vins issus de terroirs compris dans l’aire d’appellation, sous peine de sanctions pénales. La délimitation ainsi opérée participe à la protection du nom de l’AOC. A l’inverse, le terroir délimité n’est pas protégé.

Impact of aspects of the polysaccharide structure of mannoproteins on their interactions with Enological Tannins

Mannoproteins (MPs) with different structure of their polysaccharide part (branching, substitutions, …) were used to better understand the impact of characteristics of the usual structure of MPs when interacting with Grape Seed Tannins (ST).