IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Profiling the Metschnikowia yeast populations in spontaneous fermentation of Amarone della Valpolicella

Profiling the Metschnikowia yeast populations in spontaneous fermentation of Amarone della Valpolicella

Abstract

The microbial diversity during spontaneous grape must fermentation has a determinant influence on the chemical composition and sensory properties of wine. Therefore, yeast diversity is an important target to better understand wine regionality. Hence, the aim of this study was to isolate, identify, and characterize the yeast core microbiota in grape must during the early stage of lab-scale spontaneous fermentation of withered grapes to produce Amarone della Valpolicella wine (Verona, Italy). At the end of the withering process, chosen grape bunches, mainly of Corvina and Corvinone varieties, were pressed and transferred to glass bottles in the laboratory for spontaneous fermentation (SF). To investigate the impact of grape washing on microbial removal, one batch of grapes was submitted to a washing step in aqueous solution (1% w/v citric acid) at the winery before pressing. Microbial composition was investigated during the first five days of fermentation, a stage known for greater variability of microorganisms, isolating yeast colonies from WL agar plates. Overall, 67 colonies were purified and the partial 26S rRNA gene sequencing allowed the identification of six different species, among which Metschnikowia spp. was prevalent. Indeed, 42 isolates of this genus were obtained, deriving from musts of washed grapes (22) and from non-washed grapes (20). Interestingly, the washing step did not impact on the presence of pulcherrimin-producing isolates. A more in-depth characterization was carried out on those 42 isolates, as Metschnikowia spp. are acknowledged to contribute to the diversity and complexity of wine taste. A strain level analysis was performed by means of fingerprinting profiles (primer (GTG)5) and phenotypic characterization (sulfite reductase, β-glucosidase, and esterase enzymatic activities). 11 genotypic profiles and 6 different phenotypic combinations were observed among the 42 isolates. Considering both approaches, it was possible to define the presence of 19 strains of Metschnikowia spp., most of them isolated only once, but some present in both washed and non-washed grapes, throughout the whole sampling period. Results obtained in this study shed light on the native Metschnikowia yeast community of washed and non-washed withered grapes, that is composed by diverse strains, and highlight that this biodiversity can be underestimated if only genotypic or phenotypic properties are investigated. This diversity represents a reservoir of strains with enological/pro technological significance that could be applied and combined to improve the sensory characteristics of wine and fermented beverages. 

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Martelli Francesco1, Checchia Ilaria1, Troiano Eleonora1, Gatto Veronica1, Leal Binati Renato1, Torriani Sandra1 and Felis Giovanna E.1

1Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

non-Saccharomyces; microbial diversity; spontaneous fermentation; wine quality; grape washing

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France.

Characterized one of the largest collections of grapevine rootstocks (non-vinifera)

Microsatellite markers are a valuable tool to facilitate the management of germplasm collections and assess genetic diversity. This study reports the genetic characterization of a large collection of 379 rootstocks and other non-viniferaaccessions maintained at the University of Milan, Italy.

Grape phylloxera meets drought: increased risk for vines under climate change?

Climate change is increasing the frequency and severity of drought periods leading to significant impacts on agro‐economic activities

Preliminary steps of a protocol to isolate transcription factors bound to a specific DNA locus in grapevine using CRISPR-dCas9 system

Cis-acting regulatory elements are DNA sequences that can be bound by transcription factors to regulate the expression of genes in a condition-dependent and tissue-specific way. It is nowadays possible to search for DNA motives and sequences that a given transcription factor is binding or at least can, but it is still hard to have a glance at all the transcription factors that are contemporaneously located at the same locus. Inspired by an existing technique that uses the CRISPR-Cas system in mammal cells, we are trying to develop a protocol to study such regulation in Vitis vinifera. Using the highly sequence-specific binding capacity of a catalytically inactive Cas9 protein (dCas9), our idea is to set up a system to target a desired sequence and precipitate all the crosslinked proteins and distantly interacting chromatin at this locus and analyze them.

Morphological image analysis for determining bunch grape characteristics: A case study on bunch weight in Cabernet-Sauvignon

Morphological image analysis is a powerful technique used in various fields, including agriculture, to quantitatively assess the physical characteristics of objects. In viticulture, the accurate assessment of grapevine characteristics is essential for optimizing crop management and improving the quality of wine production.