IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Profiling the Metschnikowia yeast populations in spontaneous fermentation of Amarone della Valpolicella

Profiling the Metschnikowia yeast populations in spontaneous fermentation of Amarone della Valpolicella

Abstract

The microbial diversity during spontaneous grape must fermentation has a determinant influence on the chemical composition and sensory properties of wine. Therefore, yeast diversity is an important target to better understand wine regionality. Hence, the aim of this study was to isolate, identify, and characterize the yeast core microbiota in grape must during the early stage of lab-scale spontaneous fermentation of withered grapes to produce Amarone della Valpolicella wine (Verona, Italy). At the end of the withering process, chosen grape bunches, mainly of Corvina and Corvinone varieties, were pressed and transferred to glass bottles in the laboratory for spontaneous fermentation (SF). To investigate the impact of grape washing on microbial removal, one batch of grapes was submitted to a washing step in aqueous solution (1% w/v citric acid) at the winery before pressing. Microbial composition was investigated during the first five days of fermentation, a stage known for greater variability of microorganisms, isolating yeast colonies from WL agar plates. Overall, 67 colonies were purified and the partial 26S rRNA gene sequencing allowed the identification of six different species, among which Metschnikowia spp. was prevalent. Indeed, 42 isolates of this genus were obtained, deriving from musts of washed grapes (22) and from non-washed grapes (20). Interestingly, the washing step did not impact on the presence of pulcherrimin-producing isolates. A more in-depth characterization was carried out on those 42 isolates, as Metschnikowia spp. are acknowledged to contribute to the diversity and complexity of wine taste. A strain level analysis was performed by means of fingerprinting profiles (primer (GTG)5) and phenotypic characterization (sulfite reductase, β-glucosidase, and esterase enzymatic activities). 11 genotypic profiles and 6 different phenotypic combinations were observed among the 42 isolates. Considering both approaches, it was possible to define the presence of 19 strains of Metschnikowia spp., most of them isolated only once, but some present in both washed and non-washed grapes, throughout the whole sampling period. Results obtained in this study shed light on the native Metschnikowia yeast community of washed and non-washed withered grapes, that is composed by diverse strains, and highlight that this biodiversity can be underestimated if only genotypic or phenotypic properties are investigated. This diversity represents a reservoir of strains with enological/pro technological significance that could be applied and combined to improve the sensory characteristics of wine and fermented beverages. 

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Martelli Francesco1, Checchia Ilaria1, Troiano Eleonora1, Gatto Veronica1, Leal Binati Renato1, Torriani Sandra1 and Felis Giovanna E.1

1Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

non-Saccharomyces; microbial diversity; spontaneous fermentation; wine quality; grape washing

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Metodología para la zonificación de áreas vitícolas: aplicación en un area modelo del Penedés

Se propone una metodología para la zonificación del viñedo, a partir de las características climáticas, edáficas y geomorfológicas, en una área de 3700 ha del Penedés

Aromatic maturity is a cornerstone of terroir expression in red wine

In this video recording of the IVES science meeting 2023, Stéphanie Marchand (University of Bordeaux, ISVV, INRAE, UMR 1366 OENOLOGIE, Villenave d’Ornon, France) speaks about the aromatic maturity as a cornerstone of terroir expression in red wine. This presentation is based on an original article accessible for free on OENO One.

Process for partial or total dealcoholization of wine using a post-fermentation microbiological technique

The dealcoholized wine sector is experiencing strong market growth, driven by increasing consumer demand.

Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Genetic variants known to produce single residue missense mutations have been associated with phenotypic traits of commercial interest in grapevine. This is the case of the K284N substitution in VviDXS1 associated with muscat aroma, or the R197L in VviAGL11 causing stenospermocarpic seedless grapes. The impact of such mutations on protein structure, stability, dynamics, interactions, or functional mechanism can be studied by computational methods, including our pyDock scoring, previously developed. For this, knowledge on the 3D structure of the protein and its complexes with other proteins and biomolecules is required, but such knowledge is not available for virtually none of the proteins and complexes in grapevine.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.