IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Targeted and untargeted 1H-NMR analysis for sparkling wine’s authenticity

Targeted and untargeted 1H-NMR analysis for sparkling wine’s authenticity

Abstract

Studies on wineomics (wine’s metabolome) have increased considerably over the last two decades. Wine results from many environmental, human and biological factors leading to a specific metabolome for each terroir. NMR metabolomics is a particularly effective tool for studying the metabolome since it allows the rapid and simultaneous detection of major compounds from several chemical families.1 Quantitative NMR has already proven its effectiveness in monitoring the authenticity of still wines.2 In this study, we wanted to know if these approaches could be effective to guarantee sparkling wine authenticity.More than 100 French sparkling wines from different regions (i.e. Champagne, Crémant de Bordeaux, Crémant d’Alsace and Crémant de Bourgogne) were analysed by targeted and untargeted 1H-NMR approaches. The collected data were statistically processed by principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and partial orthogonal least squares discriminant analysis (OPLS-DA). Cross permutation tests and ANOVAs were performed to validate the results.Our results show that 1H-NMR metabolomics discriminates between protected designations of origin. Targeted and untargeted approaches made it possible to establish a profile for each appellation and to determine the chemical compounds significantly involved in the discrimination. Untargeted analysis allows discriminating champagne label of quality.  These analyses highlighted notions of traceability and quality to discriminate appellations of origin from sparkling wines.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Le Mao Ines1, Da Costa Gregory1, Bautista Charlyne1 and Richard Tristan1

1UMR 1366, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Science Agro, OENO, ISVV

Contact the author

Keywords

NMR, metabolomics, sparkling wines

 

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Investigation on the potentiality of a biostimulant by Fabaceae tissues and rich in triacontanol to enhance grapevine resilience under drought stress

The primary objective of this research was to investigate the potential benefits of a Fabaceae-based product rich in triacontanol (a long-chain alcohol) applied to Vitis vinifera cv. Merlot, on key physiological and productive parameters of grapevines under controlled water stress conditions.

Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Since the renewal of the French vineyard after the Phylloxera crisis, the panorama of cultivated varieties has dramatically changed. This current genetic erosion is due to the increasing interest

Nuove soluzioni e strumenti per l’agricoltura e la viticoltura di precisione

GEOSPHERA s. r. l. e TERR.A.IN. CNS, forti della grande esperienza dei loro collaboratori nell’ambito delle scienze naturali, della geologia, della geofisica e dell’informatica, garantiscono risposte innovative alle problematiche della moderna agricoltura rivolgendosi direttamente ai viticoltori, ai commercianti vinicoli ed ai liberi professionisti.

Influence of pedoclimatic factors during berry ripening in Burgundy

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy.

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.