IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Monferace a new “old style” for Grignolino wine, an autochthonous Italian variety: unity in diversity

Monferace a new “old style” for Grignolino wine, an autochthonous Italian variety: unity in diversity

Abstract

Monferace project is born from an idea of 12 winegrowers willing to create a new “old style” Grignolino wine and inspired byancient winemaking techniques of this variety (1). Monferace wine is produced with 100% Grignolino grapes after 40 months of ageing, of which 24 in wooden barrels of different volumes. Grignolino is an autochthonous Italian variety cultivated in Piedmont (north-west Italy), recently indicated as a “nephew” of the famous Nebbiolo (2) and is used to produce three different DOC wines. The Monferace Grignolino is cultivated in the geographical area identified in the Aleramic Monferrato, defined by the Po and Tanaro rivers, in the heart of Piedmont and the produced wine is characterized by a high content of tannins, marked when young, that evolve over the years. Its color is generally slight ruby red and garnet red with orange highlights with ageing. Sensory analysis on 10 Monferace wines (2019 vintage) was assessed after about 11 months of ageing in wood. A trained panel carried out the wine sensory descriptive analysis (sensory profile) as previously described (3, 4), derived from the ISO norms. The wines were evaluated using ISO (3591-1977) approved glasses in an ISO (8589-2007) tasting room, served in a randomized order and identified with a three-digit code. The descriptors of the wines were defined during a preliminary tasting session. The quantitative measures of the chosen attributes were acquired using FIZZ (Biosystems, Couternon, France). The data were subjected to statistical analysis (5). 
All the wines were characterized by 16 attributes: color (garnet red, orange highlights), odor (rose, violet, nutmeg, pepper, blackberries, cherries, jam/marmalade, dry herbaceous, oak) and taste (acidity, bitterness, astringency, structure (body) and taste-olfactory persistence). Some attributes were not quantitative statistically different (ANOVA and Tukey test, p=95%): acidity, bitterness, astringency. 
All the other attributes discriminated the wines with different intensities, from 2 groups in the case of rose, nutmeg and dry herbaceous to 6 groups for oak. The panel identified one more specific odor attribute in wine 2 (vanilla) and wine 7 (smoked-roasting). 
Each wine had a specificity: wine 5 had the highest intensity for rose, wine 10 for fruity attributes (blackberries, cherries), wine 2 for oak together with vanilla, wine 6 for dry herbaceous, wine 7 for smoked-roasting, wine 3 for pepper. Wines 8 and 9 had the lower intensities for many attributes and the profile of wine 1 was very similar to the average profile of all the 10 wines. 
These preliminary results showed the unity of sensory attributes among wines with a specificity for each product and remarked that Monferace is a very interesting wine style for Grignolino variety. 

References

1-https://monferace.it/en/ (Accessed on 28th January 2022)
2-Raimondi, S., Tumino, G., Ruffa, P., Boccacci P., Gambino G. & Schneider A., 2020, DNA-based genealogy reconstruction of Nebbiolo, Barbera and other ancient grapevine cultivars from northwestern Italy. Sci Rep 10, 15782. https://doi.org/10.1038/s41598-020-72799-6 
3-Cravero MC, Bonello F Tsolakis C., Piano F., Borsa D., 2012, Comparison between Nero d’Avola wines produced with grapes grown in Sicily and Tuscany. Italian Journal of Food Science, XXIV, (4): 384-387. 
4-Bonello, F., Cravero, M.C., Asproudi, A. et al., 2021, Exploring the aromatic complexity of Sardinian red wines obtained from minor and rare varieties. Eur. Food Res. Technol., 247, 133–156. https://doi.org/10.1007/s00217-020-03613-w
5-XLSTAT® software, version Sensory, 2020, 2.2, Addinsoft, New York.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cravero Maria Carla1, Bonello Frederica1, Asproudi Andriani1, Lottero Maria Rosa1, Gianotti Silvia2, Ronco Mario2 and Petrozziello Maurizio1 

1CREA, Research Centre for Viticulture and Enology
2Associazione Monferace 

Contact the author

Keywords

sensory analysis, Grignolino, wood ageing, Monferace

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Assessing the impact of defoliation on grape volatiles profile and wine odor characteristics in four Greek red varieties (Vitis vinifera L.) using multivariate chemometrics

Context and purpose of the study. Cultivation techniques are widely recognized for their significant impact on the aroma profile of grapes and wines.

Impact of sample size on yield estimation in commercial vineyards

The accurate estimation of yield is a fundamental for suitable viticulture, playing a pivotal role in the planning of logistics, the allocation of resources and the formulation of commercial strategies.

AOC valorization of terroir nuances at plot scale in Burgundy

In the highly competitive global wine market, Burgundy has a long-established reputation to maintain. The vine and wine sector in Burgundy is based on a five-level ranking of AOC (Appellation d’Origine Contrôlée) wines and of the plots where the grapes are grown.

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

Unveiling the secrets of catechin: insights from NMR spectroscopy

Catechins, a class of flavonoids found in foods and beverages such as wine and tea, exhibit potent antioxidant properties that contribute to various health benefits.[1]