IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Monferace a new “old style” for Grignolino wine, an autochthonous Italian variety: unity in diversity

Monferace a new “old style” for Grignolino wine, an autochthonous Italian variety: unity in diversity

Abstract

Monferace project is born from an idea of 12 winegrowers willing to create a new “old style” Grignolino wine and inspired byancient winemaking techniques of this variety (1). Monferace wine is produced with 100% Grignolino grapes after 40 months of ageing, of which 24 in wooden barrels of different volumes. Grignolino is an autochthonous Italian variety cultivated in Piedmont (north-west Italy), recently indicated as a “nephew” of the famous Nebbiolo (2) and is used to produce three different DOC wines. The Monferace Grignolino is cultivated in the geographical area identified in the Aleramic Monferrato, defined by the Po and Tanaro rivers, in the heart of Piedmont and the produced wine is characterized by a high content of tannins, marked when young, that evolve over the years. Its color is generally slight ruby red and garnet red with orange highlights with ageing. Sensory analysis on 10 Monferace wines (2019 vintage) was assessed after about 11 months of ageing in wood. A trained panel carried out the wine sensory descriptive analysis (sensory profile) as previously described (3, 4), derived from the ISO norms. The wines were evaluated using ISO (3591-1977) approved glasses in an ISO (8589-2007) tasting room, served in a randomized order and identified with a three-digit code. The descriptors of the wines were defined during a preliminary tasting session. The quantitative measures of the chosen attributes were acquired using FIZZ (Biosystems, Couternon, France). The data were subjected to statistical analysis (5). 
All the wines were characterized by 16 attributes: color (garnet red, orange highlights), odor (rose, violet, nutmeg, pepper, blackberries, cherries, jam/marmalade, dry herbaceous, oak) and taste (acidity, bitterness, astringency, structure (body) and taste-olfactory persistence). Some attributes were not quantitative statistically different (ANOVA and Tukey test, p=95%): acidity, bitterness, astringency. 
All the other attributes discriminated the wines with different intensities, from 2 groups in the case of rose, nutmeg and dry herbaceous to 6 groups for oak. The panel identified one more specific odor attribute in wine 2 (vanilla) and wine 7 (smoked-roasting). 
Each wine had a specificity: wine 5 had the highest intensity for rose, wine 10 for fruity attributes (blackberries, cherries), wine 2 for oak together with vanilla, wine 6 for dry herbaceous, wine 7 for smoked-roasting, wine 3 for pepper. Wines 8 and 9 had the lower intensities for many attributes and the profile of wine 1 was very similar to the average profile of all the 10 wines. 
These preliminary results showed the unity of sensory attributes among wines with a specificity for each product and remarked that Monferace is a very interesting wine style for Grignolino variety. 

References

1-https://monferace.it/en/ (Accessed on 28th January 2022)
2-Raimondi, S., Tumino, G., Ruffa, P., Boccacci P., Gambino G. & Schneider A., 2020, DNA-based genealogy reconstruction of Nebbiolo, Barbera and other ancient grapevine cultivars from northwestern Italy. Sci Rep 10, 15782. https://doi.org/10.1038/s41598-020-72799-6 
3-Cravero MC, Bonello F Tsolakis C., Piano F., Borsa D., 2012, Comparison between Nero d’Avola wines produced with grapes grown in Sicily and Tuscany. Italian Journal of Food Science, XXIV, (4): 384-387. 
4-Bonello, F., Cravero, M.C., Asproudi, A. et al., 2021, Exploring the aromatic complexity of Sardinian red wines obtained from minor and rare varieties. Eur. Food Res. Technol., 247, 133–156. https://doi.org/10.1007/s00217-020-03613-w
5-XLSTAT® software, version Sensory, 2020, 2.2, Addinsoft, New York.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cravero Maria Carla1, Bonello Frederica1, Asproudi Andriani1, Lottero Maria Rosa1, Gianotti Silvia2, Ronco Mario2 and Petrozziello Maurizio1 

1CREA, Research Centre for Viticulture and Enology
2Associazione Monferace 

Contact the author

Keywords

sensory analysis, Grignolino, wood ageing, Monferace

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to characterize from a sensory point of view, specific aromas of wines without added SO₂ and to identify compounds involved.

Responses of grapevine cells to physiological doses of ethanol, among which induced resistance to heat stress

Grapevine naturally endures stresses like heat, drought, and hypoxia. A recent study showed very low oxygen levels inside grape berries, linked to ethanol content.

Techniques to study graft union formation in grapevine

Grapevines are grown grafted in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which were primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, grapevine rootstocks were also selected in relation their resistance to various abiotic stress conditions. Future rootstocks should have the potential to adapt viticulture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite to be able to use them with all the varieties. The objective of this work is to develop quantitative techniques to characterize graft union formation in grapevine.

Yeast diversity in Vitis labrusca l. Ecosystems

Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, little is known about the diversity of yeast communities present in non-vinifera Vitis ecosystems (i.e., grapes and spontaneously fermenting grape musts). Potentially scientific and/or enological valuable yeast strains from these non-vinifera Vitis ecosystems might never be isolated from V. vinifera L. Using a standard culture-dependent strategy, we studied the population of yeast species during initial stages of spontaneous fermentation of V. labrusca L. (Isabella) grape musts. Rare non-Saccharomyces yeast species were recognized in Isabella, including Candida azymoides, Pichia cecembensis, Candida californica, Candida bentonensis, Issatchenkia hanoiensis and Candida apicola.

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.
At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits.