IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Monferace a new “old style” for Grignolino wine, an autochthonous Italian variety: unity in diversity

Monferace a new “old style” for Grignolino wine, an autochthonous Italian variety: unity in diversity

Abstract

Monferace project is born from an idea of 12 winegrowers willing to create a new “old style” Grignolino wine and inspired byancient winemaking techniques of this variety (1). Monferace wine is produced with 100% Grignolino grapes after 40 months of ageing, of which 24 in wooden barrels of different volumes. Grignolino is an autochthonous Italian variety cultivated in Piedmont (north-west Italy), recently indicated as a “nephew” of the famous Nebbiolo (2) and is used to produce three different DOC wines. The Monferace Grignolino is cultivated in the geographical area identified in the Aleramic Monferrato, defined by the Po and Tanaro rivers, in the heart of Piedmont and the produced wine is characterized by a high content of tannins, marked when young, that evolve over the years. Its color is generally slight ruby red and garnet red with orange highlights with ageing. Sensory analysis on 10 Monferace wines (2019 vintage) was assessed after about 11 months of ageing in wood. A trained panel carried out the wine sensory descriptive analysis (sensory profile) as previously described (3, 4), derived from the ISO norms. The wines were evaluated using ISO (3591-1977) approved glasses in an ISO (8589-2007) tasting room, served in a randomized order and identified with a three-digit code. The descriptors of the wines were defined during a preliminary tasting session. The quantitative measures of the chosen attributes were acquired using FIZZ (Biosystems, Couternon, France). The data were subjected to statistical analysis (5). 
All the wines were characterized by 16 attributes: color (garnet red, orange highlights), odor (rose, violet, nutmeg, pepper, blackberries, cherries, jam/marmalade, dry herbaceous, oak) and taste (acidity, bitterness, astringency, structure (body) and taste-olfactory persistence). Some attributes were not quantitative statistically different (ANOVA and Tukey test, p=95%): acidity, bitterness, astringency. 
All the other attributes discriminated the wines with different intensities, from 2 groups in the case of rose, nutmeg and dry herbaceous to 6 groups for oak. The panel identified one more specific odor attribute in wine 2 (vanilla) and wine 7 (smoked-roasting). 
Each wine had a specificity: wine 5 had the highest intensity for rose, wine 10 for fruity attributes (blackberries, cherries), wine 2 for oak together with vanilla, wine 6 for dry herbaceous, wine 7 for smoked-roasting, wine 3 for pepper. Wines 8 and 9 had the lower intensities for many attributes and the profile of wine 1 was very similar to the average profile of all the 10 wines. 
These preliminary results showed the unity of sensory attributes among wines with a specificity for each product and remarked that Monferace is a very interesting wine style for Grignolino variety. 

References

1-https://monferace.it/en/ (Accessed on 28th January 2022)
2-Raimondi, S., Tumino, G., Ruffa, P., Boccacci P., Gambino G. & Schneider A., 2020, DNA-based genealogy reconstruction of Nebbiolo, Barbera and other ancient grapevine cultivars from northwestern Italy. Sci Rep 10, 15782. https://doi.org/10.1038/s41598-020-72799-6 
3-Cravero MC, Bonello F Tsolakis C., Piano F., Borsa D., 2012, Comparison between Nero d’Avola wines produced with grapes grown in Sicily and Tuscany. Italian Journal of Food Science, XXIV, (4): 384-387. 
4-Bonello, F., Cravero, M.C., Asproudi, A. et al., 2021, Exploring the aromatic complexity of Sardinian red wines obtained from minor and rare varieties. Eur. Food Res. Technol., 247, 133–156. https://doi.org/10.1007/s00217-020-03613-w
5-XLSTAT® software, version Sensory, 2020, 2.2, Addinsoft, New York.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cravero Maria Carla1, Bonello Frederica1, Asproudi Andriani1, Lottero Maria Rosa1, Gianotti Silvia2, Ronco Mario2 and Petrozziello Maurizio1 

1CREA, Research Centre for Viticulture and Enology
2Associazione Monferace 

Contact the author

Keywords

sensory analysis, Grignolino, wood ageing, Monferace

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Cultivation of grapes Chardonnay in soils with management practices biodynamic and conventional

The cultivation of grapes, can be accomplished with the use of different systems and practices of agricultural management, the choice of the system to be followed in the vineyard, depends on the conditions of available resources, these being: natural, economic, social, cultural and territorial. As well, it is relevant to know the characteristics of the soil of the vineyard. In the last decade, has been recurrent use of agricultural practices which date back to milinares traditions, with the aim of promoting a recovery of soil and lead the management of cultivation with less damage to the ecosystem. The study here, aimed to quantify the environmental impacts caused in the use of nutrients in conventional tillage and of grapes in the biodynamic agricultural properties in the state of Rio Grande do Sul- Brazil.

Study of the volatil profile of minority white varieties

The genetic material preservation is a priority issue in winemaking research. The recovery of minority grape varieties can control the genetic erosion, contributing also to preserve wine typical characteristics. In D.O.Ca. Rioja (Spain) the number of grown white varieties has been very limited, representing Viura the 91% of the cultivated white grape area in 2005, while the others, Garnacha Blanca and Malvasía riojana, hardly were grown. For this reason, a recovery and characterization study of plant material was carried out in this region. In 2008, the results obtained allowed the authorization of three minority white varieties: Tempranillo Blanco, Maturana Blanca and Turruntés.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.

Cell-to-cell contact modulates Starmerella bacillaris early death in mixed fermentations with Saccharomyces cerevisiae in a couple-dependent way

AIM: The diversity and complexity of the fermentation ecosystem during wine making limits the successful prediction of wine characteristics. The use of selected starter cultures has allowed a better control of the fermentation process and the production of wines with established characteristics. Among them, the use of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae yeasts has gained attention in recent years due to the fructophylic nature of the first and the ability of this inoculation protocol to reduce the acetic acid and ethanol content of the wines.

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.