WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Aroma chemical markers of Durello wines from different vintages and origins: a case study

Aroma chemical markers of Durello wines from different vintages and origins: a case study

Abstract

Wines expressing sensory characters that are representative of their varietal and geographical origins are highly sought after in today’s market. It is therefore of considerable technological interest to investigate the aromatic aspects of specific wines and to identify the odorous substances involved. This study investigated aroma chemical and sensory diversity of Durello DOC white sparkling wines. The production of this white wine, based on the use of Vitis vinifera Durella grapes, is located in the hilly area of the eastern Lessini mountains straddling the border between the provinces of Verona and Vicenza. A peculiarity of this denomination is the subdivision of the production area into a further fifteen sub-regions. The aim of this study was the aromatic characterisation of Durello wines. Particular attention was paid to the impact of ageing/vintage and the sub-region of origin of the grapes.

For this study, a sampling of twenty-one commercial Durello provided by the Durello wine consortium was considered. These wines belonged to four different vintages (2016-2019) and seven sub-zones. Free volatile compounds as well as those obtained from the hydrolysis of  glycosidic precursors were quantified with gas chromatography mass spectrometry (GC-MS) analysis coupled with SPE and SPME extractions. Sensory evaluation of wines was carried out through sorting task performed with semi-trained panel. Wines differed significantly in their aroma chemical composition,  , in particular due to vintage/ageing and sub-zones impact. The effect of ageing was appreciable and involved different biochemical classes of compounds: esters, terpenes, norisoprenoids and methyl salicylate. With ageing, a decrease in acetic esters, some ethyl esters, free and bound terpenes and a simultaneous increase in norisoprenoids, some cyclic terpenes and methyl salicylate were found. Differences attributable to the sub-regions were mainly due to terpenes and norisoprenoids but also benzenoids, fatty acids and some sulphur compounds. The sorting task identified two clusters, the main variable associated to sensory differences was vintage/aging but further elements related to production style were identified. 1,4-Cineole was identified as an aromatic marker of Durello sparkling wine.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Giovanni Luzzini, Daniele, Facinelli, Davide, Slaghenaufi, Maurizio, Ugliano 

Presenting author

Giovanni Luzzini – Università di Verona

Università di Verona | Università di Verona | Università di Verona

Contact the author

Keywords

Durello – White sparkling wines aroma – Cineoles – Additional geographical mentions – wine aging

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Impact of closures on aroma of godello and torrontés white wines post-bottling

Aromatic composition contributes mainly to the quality aroma of white wine. A natural and gradual evolution of the aroma in the bottle occurs over storage with a very low oxygen content.

Aromas of Riesling wine: impact of bottling and storage conditions

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace.

Towards microbiota-based disease management: analysis of grapevine microbiota in plots with contrasted levels of downy mildew infection

Vineyards harbor a myriad of microorganisms that interact with each other and with the grapevines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola that causes grapevine downy mildew. Others, such as plant growth promoting bacteria and disease biocontrol agents, have a positive influence on vine health. The present study aims to (1) investigate whether vine-based culture media increase the cultivability of the grapevine microbiota, in comparison to standard culture media and (2) identify and isolate bacterial taxa naturally present in grapevine leaves and significantly more abundant in plots showing low susceptibility to downy mildew.

Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted.

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions.