WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Antioxidant activity of grape seed and skin extract during ripening

Antioxidant activity of grape seed and skin extract during ripening

Abstract

Reactive oxygen species (ROS) play an important physiological role in the body’s defense and being involved in numerous signaling pathways 1, 2. When the balance between oxidant and antioxidant species is altered in favor of ROS, oxidative stress is generated. In this condition the cells are damaged as the ROS oxidize important cellular components, such as proteins, lipids, nucleic acids and carbohydrates. The damage caused at the cellular level has repercussions on a systemic level favoring the appearance of various chronic and inflammatory diseases, such as cancer, cardiovascular diseases, type 2 diabetes and Alzheimer’s disease 3, 4. A way to keep the equilibrium in the organism is the intake of alimentary antioxidants that work synergistically with the endogenous ones to keep the good state of health. Dietary polyphenols are one of the most important groups of natural antioxidants, they are secondary metabolites found in fruits, vegetables, cereals, tea, wine. Grape is known to be one of the richest foods in polyphenols and the antioxidant activity of the grape is directly related to the phenolic concentration and composition, which varies during the ripening. In this work the antioxidant activity of grape seed and skin extracts of the red varieties Syrah, Tannat and Merlot during the ripening were evaluated through in vitro assays. The reference method Folin-Ciocalteu was used for the determination of the total polyphenol content (TPC) and the total antioxidant capacity (TAC) was determined through the radical scavenging assay using 1.1 -diphenyl-2-picrylhydrazyl (DPPH).5 The results of the analyses show that the seed extracts were richer in polyphenols than the skin extracts and had the highest antioxidant potential for all the grape ripening stages. The highest TPC and TAC values were found at the green stage for skins, at veraison for seeds.

[1] P. Tai, M. Ascoli, Reactive oxygen species (ROS) play a critical role in the cAMP-induced activation of Ras and the phosphorylation of ERK1/2 in Ledydig cells. Molecular endocrinology 25 (2011) 885-893.

[2] M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological function and human disease. The International Journal of Biochemistry & Cell Biology 39,1 (2007) 44-84.

[3] Grune, R. Shringarpure, N. Sitte, K. Davies, Age-Related changes in protein oxidation and proteolysis in mammalian cells. Journal of Gerontology, 56A (2001), B459-B467.

[4] N. Noguchi, E. Niki, Phenolic antioxidants: A rationale for design and evaluation of novel antioxidant drug for atherosclerosis. Free Radical Biology & Medicine, 28 (2000), 1538-1546.

[5] V.S. Chedea, R. M. Pop, Total polyphenol content and antioxidant DPPH assays on biological samples. In R. R. Watson (Ed.), Polyphenols in plants (2019) 169-183.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Adriana Capozzi, Luca Garcia, Karen Lambert, Cédric Saucier

Presenting author

Adriana Capozzi – SPO, Université de Montpellier, INRAe, Montpellier SupAgro, 34000 Montpellier, France

SPO, Université de Montpellier, INRAe, Montpellier SupAgro, 34000 Montpellier, France | PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France | SPO, Université de Montpellier, INRAe, Montpellier SupAgro, 34000 Montpellier, France

Contact the author

Keywords

skin-seeds-antioxidant activity-polyphenols-grape

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Diversity of arbuscular mycorrhizal fungi on grapevine roots across an edaphoclimatic gradient

Challenges associated with climate change, such as soil erosion and drought, have impacted viticulture across wine regions globally in recent decades. As winegrowers struggle to maintain yield and quality standards under these conditions, methods to adapt to and mitigate the impacts of climate change have become more prevalent. One potential mitigation strategy is to enhance symbiotic interaction of grapevine roots with arbuscular mycorrhizal fungi (AMF).

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Aims: In previous work, five indigenous Pichia kluyveri strains, GS1-1, FS-2-7, HS-2-1, C730 and C732, were isolated and selected from spontaneous fermented wines from Ningxia and Gansu. The aims of this study were to 1) evaluate resistance of these strains to environmental stressors that may restrict their growth and the progress of alcoholic fermentation; 2) Investigate their fermentation dynamics; 3) Characterise aroma profiles of Cabernet Sauvignon wines made from mixed cultures of P. kluyveri and Saccharomyces cerevisiae.

Vitamins in musts : an unexplored field

Vitamins are major compounds, involved in several prime yeast metabolic pathways. Yet, their significance in oenology has remained mostly unexplored for several decades and our current knowledge on the matter still remaining obscure to this day. While the vitaminic contents of grape musts have been approached in these ancient investigation

Nematode vectors, grape fanleaf virus (GFLV) incidence and free virus vine plants obtaining in “Condado de Huelva” vineyards zone

The « Condado de Huelva » Registered Appellation Origin Mark (RAOM) is located in the Province of Huelva, in the southwest of Andalucía (Spain), being limited by the Atlantic Ocean and the Province of Sevilla. « Zalema », a white high productive grapevine plant is its major cultivar. The predominant rootstocks used are « Rupestris du Lot », « Castel 196-17 », « Couderc 161-49 », Couderc 33-09 », « Richter 110 » and « Millardet 41-B ». Traditionally, « Zalema » cv. has been dedicated to the elaboration of amber, bouquet-flavoured wines and in the last years mainly to young, fruit-flavoured white table wines.