WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Antioxidant activity of grape seed and skin extract during ripening

Antioxidant activity of grape seed and skin extract during ripening

Abstract

Reactive oxygen species (ROS) play an important physiological role in the body’s defense and being involved in numerous signaling pathways 1, 2. When the balance between oxidant and antioxidant species is altered in favor of ROS, oxidative stress is generated. In this condition the cells are damaged as the ROS oxidize important cellular components, such as proteins, lipids, nucleic acids and carbohydrates. The damage caused at the cellular level has repercussions on a systemic level favoring the appearance of various chronic and inflammatory diseases, such as cancer, cardiovascular diseases, type 2 diabetes and Alzheimer’s disease 3, 4. A way to keep the equilibrium in the organism is the intake of alimentary antioxidants that work synergistically with the endogenous ones to keep the good state of health. Dietary polyphenols are one of the most important groups of natural antioxidants, they are secondary metabolites found in fruits, vegetables, cereals, tea, wine. Grape is known to be one of the richest foods in polyphenols and the antioxidant activity of the grape is directly related to the phenolic concentration and composition, which varies during the ripening. In this work the antioxidant activity of grape seed and skin extracts of the red varieties Syrah, Tannat and Merlot during the ripening were evaluated through in vitro assays. The reference method Folin-Ciocalteu was used for the determination of the total polyphenol content (TPC) and the total antioxidant capacity (TAC) was determined through the radical scavenging assay using 1.1 -diphenyl-2-picrylhydrazyl (DPPH).5 The results of the analyses show that the seed extracts were richer in polyphenols than the skin extracts and had the highest antioxidant potential for all the grape ripening stages. The highest TPC and TAC values were found at the green stage for skins, at veraison for seeds.

[1] P. Tai, M. Ascoli, Reactive oxygen species (ROS) play a critical role in the cAMP-induced activation of Ras and the phosphorylation of ERK1/2 in Ledydig cells. Molecular endocrinology 25 (2011) 885-893.

[2] M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological function and human disease. The International Journal of Biochemistry & Cell Biology 39,1 (2007) 44-84.

[3] Grune, R. Shringarpure, N. Sitte, K. Davies, Age-Related changes in protein oxidation and proteolysis in mammalian cells. Journal of Gerontology, 56A (2001), B459-B467.

[4] N. Noguchi, E. Niki, Phenolic antioxidants: A rationale for design and evaluation of novel antioxidant drug for atherosclerosis. Free Radical Biology & Medicine, 28 (2000), 1538-1546.

[5] V.S. Chedea, R. M. Pop, Total polyphenol content and antioxidant DPPH assays on biological samples. In R. R. Watson (Ed.), Polyphenols in plants (2019) 169-183.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Adriana Capozzi, Luca Garcia, Karen Lambert, Cédric Saucier

Presenting author

Adriana Capozzi – SPO, Université de Montpellier, INRAe, Montpellier SupAgro, 34000 Montpellier, France

SPO, Université de Montpellier, INRAe, Montpellier SupAgro, 34000 Montpellier, France | PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France | SPO, Université de Montpellier, INRAe, Montpellier SupAgro, 34000 Montpellier, France

Contact the author

Keywords

skin-seeds-antioxidant activity-polyphenols-grape

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Multi-mineral wine profiling and Artificial Intelligence: Implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry

Multi-mineral wine profiling and artificial intelligence: implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry. Although their quantity is minimal, minerals are essential elements in the composition of every wine. Their presence is the result of complex interactions between factors such as soil, vines, climate, topography, and viticultural practices, all influenced by the terroir. Each stage of the winemaking process also contributes to shaping the unique mineral and taste profile of each wine, giving each cuvée its distinctive characteristics.

Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast Assimilable Nitrogen and Sugar content.

Hydroxytyrosol (HT) is well known for its potent antioxidant activity and anticarcinogenic, antimicrobial, cardioprotective and neuroprotective properties. One possible explanation to its origin in wines is the synthesis from tyrosol, which in turn is produced from the Ehrlich pathway by yeasts. This work aims to explore the factors that could increase the final content as the initial concentration of yeast assimilable nitrogen (YAN) and sugar. Two different concentrations of YAN were proved between 210mg/L and 300 mg/L. Additionally, two different concentrations of sugar were used: 100g/L and 240 g/L. Alcoholic fermentations in synthetic must were performed with the strain QA23.

Cluster trait prediction using hyperspectral signatures in a population of 221 Riesling clones

Cluster architecture in grapevine plays a critical role in influencing bunch microclimate, thus quality traits, including sugar content, phenolic composition, and disease susceptibility.

Study and valorization of vineyards “terroirs” in the Val de Loire

Face à la concurrence mondiale, il est indispensable de s’orienter vers des vins de qualité, marqués par une typicité et une authenticité inimitables. Le terroir représente, pour une région donnée, un patrimoine unique et non reproductible, qui peut être valorisé à travers l’origine et les caractéristiques sensorielles du vin.

Experimental vinification of withered grapes of Vitis vinifera “Muscat of Alexandria”

The objective of the present work is to investigate wine produced from dehydrated grapes and vinified according to classical Roman manuals.

METHODS – Locally produced Muscat of Alexandria’s grapes were used for the sweet wine production, grown in the experimental vineyard of Instituto Superior de Agronomia (Lisbon, Portugal). The grapes were harvested manually slightly over-ripe and subjected to greenhouse drying. After 7-10 days dried grapes were transported to an experimental winery for various operations (e.g., grape weighing, sorting, crushing/destemming). Several maceration protocols were used comprising the addition of saltwater and white wine to whole bunches or destemmed grapes. Fermentation was conducted with the addition of commercial yeast. The standard physico-chemical parameters of wines were determined according to the OIV standards.