WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Antioxidant activity of grape seed and skin extract during ripening

Antioxidant activity of grape seed and skin extract during ripening

Abstract

Reactive oxygen species (ROS) play an important physiological role in the body’s defense and being involved in numerous signaling pathways 1, 2. When the balance between oxidant and antioxidant species is altered in favor of ROS, oxidative stress is generated. In this condition the cells are damaged as the ROS oxidize important cellular components, such as proteins, lipids, nucleic acids and carbohydrates. The damage caused at the cellular level has repercussions on a systemic level favoring the appearance of various chronic and inflammatory diseases, such as cancer, cardiovascular diseases, type 2 diabetes and Alzheimer’s disease 3, 4. A way to keep the equilibrium in the organism is the intake of alimentary antioxidants that work synergistically with the endogenous ones to keep the good state of health. Dietary polyphenols are one of the most important groups of natural antioxidants, they are secondary metabolites found in fruits, vegetables, cereals, tea, wine. Grape is known to be one of the richest foods in polyphenols and the antioxidant activity of the grape is directly related to the phenolic concentration and composition, which varies during the ripening. In this work the antioxidant activity of grape seed and skin extracts of the red varieties Syrah, Tannat and Merlot during the ripening were evaluated through in vitro assays. The reference method Folin-Ciocalteu was used for the determination of the total polyphenol content (TPC) and the total antioxidant capacity (TAC) was determined through the radical scavenging assay using 1.1 -diphenyl-2-picrylhydrazyl (DPPH).5 The results of the analyses show that the seed extracts were richer in polyphenols than the skin extracts and had the highest antioxidant potential for all the grape ripening stages. The highest TPC and TAC values were found at the green stage for skins, at veraison for seeds.

[1] P. Tai, M. Ascoli, Reactive oxygen species (ROS) play a critical role in the cAMP-induced activation of Ras and the phosphorylation of ERK1/2 in Ledydig cells. Molecular endocrinology 25 (2011) 885-893.

[2] M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological function and human disease. The International Journal of Biochemistry & Cell Biology 39,1 (2007) 44-84.

[3] Grune, R. Shringarpure, N. Sitte, K. Davies, Age-Related changes in protein oxidation and proteolysis in mammalian cells. Journal of Gerontology, 56A (2001), B459-B467.

[4] N. Noguchi, E. Niki, Phenolic antioxidants: A rationale for design and evaluation of novel antioxidant drug for atherosclerosis. Free Radical Biology & Medicine, 28 (2000), 1538-1546.

[5] V.S. Chedea, R. M. Pop, Total polyphenol content and antioxidant DPPH assays on biological samples. In R. R. Watson (Ed.), Polyphenols in plants (2019) 169-183.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Adriana Capozzi, Luca Garcia, Karen Lambert, Cédric Saucier

Presenting author

Adriana Capozzi – SPO, Université de Montpellier, INRAe, Montpellier SupAgro, 34000 Montpellier, France

SPO, Université de Montpellier, INRAe, Montpellier SupAgro, 34000 Montpellier, France | PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France | SPO, Université de Montpellier, INRAe, Montpellier SupAgro, 34000 Montpellier, France

Contact the author

Keywords

skin-seeds-antioxidant activity-polyphenols-grape

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.

Regional discrimination of shiraz using targeted and non-targeted analytical approaches

Aims: Shiraz is the most widely cultivated grape variety in Australia, and is grown under a range of viticultural and climatic conditions. Given its importance to the Australian wine sector, a number of studies have been conducted in recent years which involved a comprehensive assessment of grape composition, in order to objectively predict wine quality and style outcomes.

Prevention of quercetin precipitation in red wines: a promising enzymatic solution

In this video recording of the IVES science meeting 2023, Simone Vincenzi (Department of agronomy, food, natural resources, animals and environment (DAFNAE), University of Padova, Italy) speaks about the prevention of quercetin precipitation in red wines with a promising enzymatic solution. This presentation is based on an original article accessible for free on OENO One.

The pedoclimatic conditions impact the yeast assimilable nitrogen concentration in the grapevine must and the valorisation of foliarnitrogen fertilisation

Aims: Agroscope investigated the efficiency of nitrogen fertilisation via foliar urea application at veraison with the aim of raising the yeast assimilable nitrogen (YAN) concentration in the musts