WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Antioxidant activity of grape seed and skin extract during ripening

Antioxidant activity of grape seed and skin extract during ripening

Abstract

Reactive oxygen species (ROS) play an important physiological role in the body’s defense and being involved in numerous signaling pathways 1, 2. When the balance between oxidant and antioxidant species is altered in favor of ROS, oxidative stress is generated. In this condition the cells are damaged as the ROS oxidize important cellular components, such as proteins, lipids, nucleic acids and carbohydrates. The damage caused at the cellular level has repercussions on a systemic level favoring the appearance of various chronic and inflammatory diseases, such as cancer, cardiovascular diseases, type 2 diabetes and Alzheimer’s disease 3, 4. A way to keep the equilibrium in the organism is the intake of alimentary antioxidants that work synergistically with the endogenous ones to keep the good state of health. Dietary polyphenols are one of the most important groups of natural antioxidants, they are secondary metabolites found in fruits, vegetables, cereals, tea, wine. Grape is known to be one of the richest foods in polyphenols and the antioxidant activity of the grape is directly related to the phenolic concentration and composition, which varies during the ripening. In this work the antioxidant activity of grape seed and skin extracts of the red varieties Syrah, Tannat and Merlot during the ripening were evaluated through in vitro assays. The reference method Folin-Ciocalteu was used for the determination of the total polyphenol content (TPC) and the total antioxidant capacity (TAC) was determined through the radical scavenging assay using 1.1 -diphenyl-2-picrylhydrazyl (DPPH).5 The results of the analyses show that the seed extracts were richer in polyphenols than the skin extracts and had the highest antioxidant potential for all the grape ripening stages. The highest TPC and TAC values were found at the green stage for skins, at veraison for seeds.

[1] P. Tai, M. Ascoli, Reactive oxygen species (ROS) play a critical role in the cAMP-induced activation of Ras and the phosphorylation of ERK1/2 in Ledydig cells. Molecular endocrinology 25 (2011) 885-893.

[2] M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological function and human disease. The International Journal of Biochemistry & Cell Biology 39,1 (2007) 44-84.

[3] Grune, R. Shringarpure, N. Sitte, K. Davies, Age-Related changes in protein oxidation and proteolysis in mammalian cells. Journal of Gerontology, 56A (2001), B459-B467.

[4] N. Noguchi, E. Niki, Phenolic antioxidants: A rationale for design and evaluation of novel antioxidant drug for atherosclerosis. Free Radical Biology & Medicine, 28 (2000), 1538-1546.

[5] V.S. Chedea, R. M. Pop, Total polyphenol content and antioxidant DPPH assays on biological samples. In R. R. Watson (Ed.), Polyphenols in plants (2019) 169-183.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Adriana Capozzi, Luca Garcia, Karen Lambert, Cédric Saucier

Presenting author

Adriana Capozzi – SPO, Université de Montpellier, INRAe, Montpellier SupAgro, 34000 Montpellier, France

SPO, Université de Montpellier, INRAe, Montpellier SupAgro, 34000 Montpellier, France | PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 9412, Montpellier, France | SPO, Université de Montpellier, INRAe, Montpellier SupAgro, 34000 Montpellier, France

Contact the author

Keywords

skin-seeds-antioxidant activity-polyphenols-grape

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Intelligent use of ethanol for the direct quantitative determination of volatile compounds in spirit drinks

The quality of any alcoholic beverage depends on many parameters, such as cultivars, harvesting time, fermentation, distillation technology used, quality and type of wooden barrels (in case of matured drinks), etc.; however, the most important factor in their classification is content of volatile compounds.

Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Aim: To investigate the possibility of utilising simultaneous measurements of absorbance-transmittance and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics, as a robust method that gives rapid results for classification of wines from different regions of South Australia according to their Geographical Indication (GI), and to gain insight into the effect of terroir on inter regional variation.

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation. Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.

Arsenic in berries and its correlation with natural soil content: experience in Trentino (Italy)

l lavoro presenta l’evoluzione dei contenuti di arsenico nelle uve durante lo sviluppo e la maturazione, e la sua distribuzione nell’acino; verifica inoltre la relazione tra i contenuti di As nelle uve

Similarities among wine aromas and landscape scents around the vineyard in five Mediterranean sites

We compared 68 aroma compounds in wines from 5 vineyards in order to see similarities among the wine aroma and the scent of some of the main native plants from the respective vineyards.