WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Abstract

Alcoholic fermentation conducted by microorganism is a key step in the production of wine. In this process, interactions between different species of yeast are widely described but their mechanisms are still poorly understood. The interactions studied in wine are mainly between Saccharomyces and non-Saccharomyces species. Therefore, little is known about the mechanisms of interactions between Saccharomyces cerevisiae strains in mixed culture, yet they are major actors that are in part responsible for the metabolic modifications within each strain and therefore for the quality of the final product. In order to better understand interactions occurring between two strains of S. cerevisiae, pure cultures were compared with mixed co-cultures and blend of wines using ultra high-resolution mass spectrometry, LC-MS, GC-MS and sensory analysis. Three mixed were studied, on the same Chardonnay must, each involving a common strain. Ultrahigh -resolution mass spectrometry (uHRMS) revealed important differences between pure cultures and mixed cultures. This work reports that mixed fermentation led to changes in chemical wine composition. Besides, we found that the blends showed a different chemical composition than mixed cultures. This indicates that the co-culture did not consist of the addition of two independent yeast metabolisms but of interaction events.  We also observed that depending on the strain associated to the common strain, there were interaction phenomena of different natures. These findings were further demonstrated by the volatilome study of 65 volatile compounds and sensory analysis. Indeed, a modulation of the volatile composition and sensory profile were noted when both strains were combined but also according to the strains involved in the fermentation.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

FANNY BORDET, Rémy Romanet, Florian Bahut, Jordi Ballester, Cristina Peña, Régis Gougeon, Anne Julien-Ortiz, Philippe Schmitt Kopplin, Chloé Roullier-Gall, Hervé Alexandre

Presenting author

FANNY BORDET – Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France ; Lallemand SAS, 19 rue des Briquetiers, Blagnac CEDEX, France

Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France | Lallemand SAS, 19 rue des Briquetiers, Blagnac CEDEX, France | Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne – Franche-Comté, F-21000 Dijon, France | University of Zaragoza, Nutrition, Laboratorio de Análisis del Aroma y Enología (LAAE) Dpt. Química Analítica. Facultad de Ciencias, . 50009 Zaragoza. Spain | Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France | Lallemand SAS, 19 rue des Briquetiers, Blagnac CEDEX, France | German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany | Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France | Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France,

Contact the author

Keywords

Saccharomyces cerevisiae – interactions – metabolomic – sensory analysis – volatiles compounds

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

A climatic characterisation of the sub-Appellations in the Niagara Peninsula wine region

This study used climatic and topographic data to characterize the sub-appellations that have been recently delineated in the Niagara Peninsula viticulture area in order to assess their potential for ripening early to late season Vitis vinifera varieties. No major differences were found in the ripening-period mean temperatures, but major differences in the diurnal temperature ranges were observed.

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Nowadays, it is well known that oxygen significantly impacts wine quality. The amount of oxygen wine consumes during the winemaking process depends on several factors, such as storage conditions, the number of rackings, the materials used for aging, and the type of closure chosen for bottling.

Isolation of indigenous yeast strains from the Purcari and Trifești wine centers in the Republic of Moldova and evaluation of their impact on the quality of dry red wines

In the conducted research, 30 yeast strains from red grape varieties were isolated from the Purcari wine center, and 28 yeast strains from red grape varieties were isolated from the Trifești wine center in the Republic of Moldova.