WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Abstract

Alcoholic fermentation conducted by microorganism is a key step in the production of wine. In this process, interactions between different species of yeast are widely described but their mechanisms are still poorly understood. The interactions studied in wine are mainly between Saccharomyces and non-Saccharomyces species. Therefore, little is known about the mechanisms of interactions between Saccharomyces cerevisiae strains in mixed culture, yet they are major actors that are in part responsible for the metabolic modifications within each strain and therefore for the quality of the final product. In order to better understand interactions occurring between two strains of S. cerevisiae, pure cultures were compared with mixed co-cultures and blend of wines using ultra high-resolution mass spectrometry, LC-MS, GC-MS and sensory analysis. Three mixed were studied, on the same Chardonnay must, each involving a common strain. Ultrahigh -resolution mass spectrometry (uHRMS) revealed important differences between pure cultures and mixed cultures. This work reports that mixed fermentation led to changes in chemical wine composition. Besides, we found that the blends showed a different chemical composition than mixed cultures. This indicates that the co-culture did not consist of the addition of two independent yeast metabolisms but of interaction events.  We also observed that depending on the strain associated to the common strain, there were interaction phenomena of different natures. These findings were further demonstrated by the volatilome study of 65 volatile compounds and sensory analysis. Indeed, a modulation of the volatile composition and sensory profile were noted when both strains were combined but also according to the strains involved in the fermentation.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

FANNY BORDET, Rémy Romanet, Florian Bahut, Jordi Ballester, Cristina Peña, Régis Gougeon, Anne Julien-Ortiz, Philippe Schmitt Kopplin, Chloé Roullier-Gall, Hervé Alexandre

Presenting author

FANNY BORDET – Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France ; Lallemand SAS, 19 rue des Briquetiers, Blagnac CEDEX, France

Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France | Lallemand SAS, 19 rue des Briquetiers, Blagnac CEDEX, France | Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne – Franche-Comté, F-21000 Dijon, France | University of Zaragoza, Nutrition, Laboratorio de Análisis del Aroma y Enología (LAAE) Dpt. Química Analítica. Facultad de Ciencias, . 50009 Zaragoza. Spain | Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France | Lallemand SAS, 19 rue des Briquetiers, Blagnac CEDEX, France | German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany | Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France | Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France,

Contact the author

Keywords

Saccharomyces cerevisiae – interactions – metabolomic – sensory analysis – volatiles compounds

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Applying value proposition design to collective strategic actions in family wineries: enhancing territorial resources in Vale dos Vinhedos, Brazil

The study aims to propose collective strategic actions for family wineries, promoting their competitiveness and the valorization of territorial resources.

OmicBots – An innovative and intelligent multi-omics platform facing wine sector challenges

To face emerging competition and challenges, wine producers globally rely on precision viticulture (PV) solutions to boost productivity, enhance quality, increase profitability, and reduce the environmental impact of vineyards. Current pv methods predominantly use multispectral sensor data from several platforms (satellites or vineyard installations). However, these applications generally use data analysis strategies lacking physiological grapevine support.

Achieving Tropical Fruit Aromas in White Wine through Innovative Winemaking Processes

Tropical fruit aroma is highly desirable in certain white wine styles and there is a significant group of consumers that show preference for this aroma.

Varieties and rootstocks: an important mean for adaptation to terroir

A large genetic diversity exists among V. vinifera varieties, but also among cultivated rootstocks. This diversity is important to adapt plant material to different environmental conditions

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.