WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Abstract

Alcoholic fermentation conducted by microorganism is a key step in the production of wine. In this process, interactions between different species of yeast are widely described but their mechanisms are still poorly understood. The interactions studied in wine are mainly between Saccharomyces and non-Saccharomyces species. Therefore, little is known about the mechanisms of interactions between Saccharomyces cerevisiae strains in mixed culture, yet they are major actors that are in part responsible for the metabolic modifications within each strain and therefore for the quality of the final product. In order to better understand interactions occurring between two strains of S. cerevisiae, pure cultures were compared with mixed co-cultures and blend of wines using ultra high-resolution mass spectrometry, LC-MS, GC-MS and sensory analysis. Three mixed were studied, on the same Chardonnay must, each involving a common strain. Ultrahigh -resolution mass spectrometry (uHRMS) revealed important differences between pure cultures and mixed cultures. This work reports that mixed fermentation led to changes in chemical wine composition. Besides, we found that the blends showed a different chemical composition than mixed cultures. This indicates that the co-culture did not consist of the addition of two independent yeast metabolisms but of interaction events.  We also observed that depending on the strain associated to the common strain, there were interaction phenomena of different natures. These findings were further demonstrated by the volatilome study of 65 volatile compounds and sensory analysis. Indeed, a modulation of the volatile composition and sensory profile were noted when both strains were combined but also according to the strains involved in the fermentation.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

FANNY BORDET, Rémy Romanet, Florian Bahut, Jordi Ballester, Cristina Peña, Régis Gougeon, Anne Julien-Ortiz, Philippe Schmitt Kopplin, Chloé Roullier-Gall, Hervé Alexandre

Presenting author

FANNY BORDET – Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France ; Lallemand SAS, 19 rue des Briquetiers, Blagnac CEDEX, France

Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France | Lallemand SAS, 19 rue des Briquetiers, Blagnac CEDEX, France | Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne – Franche-Comté, F-21000 Dijon, France | University of Zaragoza, Nutrition, Laboratorio de Análisis del Aroma y Enología (LAAE) Dpt. Química Analítica. Facultad de Ciencias, . 50009 Zaragoza. Spain | Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France | Lallemand SAS, 19 rue des Briquetiers, Blagnac CEDEX, France | German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany | Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France | Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France,

Contact the author

Keywords

Saccharomyces cerevisiae – interactions – metabolomic – sensory analysis – volatiles compounds

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Investigating the carbon sequestration potential in vineyard soils–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard in a climate change scenario.

Artificial intelligence-driven classification method of grapevine phenology using conventional RGB imaging

The phenological stage of the grapevine (Vitis vinifera L.) represents a fundamental element in vineyard management, since it determines key practices such as fertilization, irrigation, phytosanitary interventions and optimal harvest time (Mullins et al., 1992).

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France).During the alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. During wine fermentation, a daily measurement of hydrogen sulfide was carried out.

Influence of the temperature of the prise de mousse on the effervescence and foam of Champagne and sparkling wines.

The persistence of effervescence and foam collar during a Champagne or sparkling wine tasting constitute one, among others, specific consumer preference for these products. Many different factors related to the product or to the tasting conditions might influence their behavior in the glass

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.