WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Abstract

Alcoholic fermentation conducted by microorganism is a key step in the production of wine. In this process, interactions between different species of yeast are widely described but their mechanisms are still poorly understood. The interactions studied in wine are mainly between Saccharomyces and non-Saccharomyces species. Therefore, little is known about the mechanisms of interactions between Saccharomyces cerevisiae strains in mixed culture, yet they are major actors that are in part responsible for the metabolic modifications within each strain and therefore for the quality of the final product. In order to better understand interactions occurring between two strains of S. cerevisiae, pure cultures were compared with mixed co-cultures and blend of wines using ultra high-resolution mass spectrometry, LC-MS, GC-MS and sensory analysis. Three mixed were studied, on the same Chardonnay must, each involving a common strain. Ultrahigh -resolution mass spectrometry (uHRMS) revealed important differences between pure cultures and mixed cultures. This work reports that mixed fermentation led to changes in chemical wine composition. Besides, we found that the blends showed a different chemical composition than mixed cultures. This indicates that the co-culture did not consist of the addition of two independent yeast metabolisms but of interaction events.  We also observed that depending on the strain associated to the common strain, there were interaction phenomena of different natures. These findings were further demonstrated by the volatilome study of 65 volatile compounds and sensory analysis. Indeed, a modulation of the volatile composition and sensory profile were noted when both strains were combined but also according to the strains involved in the fermentation.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

FANNY BORDET, Rémy Romanet, Florian Bahut, Jordi Ballester, Cristina Peña, Régis Gougeon, Anne Julien-Ortiz, Philippe Schmitt Kopplin, Chloé Roullier-Gall, Hervé Alexandre

Presenting author

FANNY BORDET – Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France ; Lallemand SAS, 19 rue des Briquetiers, Blagnac CEDEX, France

Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France | Lallemand SAS, 19 rue des Briquetiers, Blagnac CEDEX, France | Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne – Franche-Comté, F-21000 Dijon, France | University of Zaragoza, Nutrition, Laboratorio de Análisis del Aroma y Enología (LAAE) Dpt. Química Analítica. Facultad de Ciencias, . 50009 Zaragoza. Spain | Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France | Lallemand SAS, 19 rue des Briquetiers, Blagnac CEDEX, France | German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany | Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France | Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon,France-IUVV, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France,

Contact the author

Keywords

Saccharomyces cerevisiae – interactions – metabolomic – sensory analysis – volatiles compounds

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Improved analysis of isomeric polyphenol dimers using the 4th dimension of trapped ion mobility spectrometry – mass spectrometry

Dehydrodicatechins have recently received attention as oxidation markers especially in grapes and wine. Their analysis mainly uses LC-MS/MS which is able to differentiate them from their natural isomers (dimeric procyanidins), based on specific fragments

Kinetics modeling of a sangiovese wine chemical and physical parameters during one-year aging in different tank materials

The use of different tank materials during red wine aging has become increasingly popular, but little is known about their impact on wine chemical and physical parameters.

Residual copper quantification on grapevine’s organs

Copper is listed among the active substances candidates for substitution (Regulation EU 2015/408). Yet still, because of the lack of valid alternatives, the European Commission recently confirmed its usage authorization by limiting the maximum amount to 28 Kg per hectare in 7 years, i.e. an average of 4 kg/year (Reg. EU 2018/1981).This restriction is due to copper accumulation in soils and surface waters both caused by a steady application, especially on perennial crops (Riepert et al., 2013). The aim of this work is to determine if treatments with reduced copper dosages are able to reach different grapevine’s organs, with particular focus on the core of bunches, and if these small amounts can ensure the respect of the legislative prescription, without compromising the phytosanitary conditions of the vineyards, thus grape yields.

Investigating the impact of bottle color, temperature and light exposure on rose wine characteristics

Rosé is leading the fastest growth wine category which hit a 40% increase since 2002. France accounts for over a third (34%) of global consumption followed by the US

Island and coastal vineyards in the context of climate change

Aim: The notion of “terroir” enables the attribution of distinctive characteristics to wines from the same region. Climate change raises issues about viticulture, especially the growth of the vines and even more importantly the economic situation of actual wine-growing regions (Schultz and Jones 2010; Quénol 2014). Several studies have addressed the impacts of climate change on viticulture in