WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Oak wood barrel tannin potential builds white wines oxidative stability and contributes to wine metabolomics fingerprint

Oak wood barrel tannin potential builds white wines oxidative stability and contributes to wine metabolomics fingerprint

Abstract

Considerable advances have been made in the chemical characterization of wine metabolites through its holistic study using both targeted and untargeted metabolomics approach. The metabolite pool is subject to an intense molecular dialogue which reinforces the wine complexity even after bottling. The wine oxidative stability might be understood as the intrinsic matrix capacity to prevent aroma deterioration due to oxidative processes. Barrel aging in oak wood is a key element of the elaboration of premium white wines. We have shown that the oak wood tannin potential can influence the wine character and its oxidative status. Here, we report the cross-analysis of the evolution of the antioxidant capacity and related metabolomic fingerprint for white wines made from three distinct varieties (Chardonnay, Semillon, Sauvignon) in barrels with distinct tannin potential. 

The sample set was made of 10 bottles of 2016 Chardonnay where 5 were raised in low tannin potential (LTP) barrels and 5 in medium tannin potential (MTP) barrels; 6 bottles of 2016 Sauvignon (3 LTP and 3 MTP). Fourteen bottles of blends of Sauvignon and Semillon of two vintages (6 bottles of 2016 and 8 of 2017) were also considered to compare new barrel aging to the aging in already used barrel. Wines were assayed for their ability to scavenge DPPH radical, and they were analyzed through untargeted UPLC-Q-Tof-MS and targeted GC-TQ-MS analyses. The untargeted metabolomics approach revealed molecular fingerprints (elemental composition determination) resulting from complex interactions between the wine matrix and the tannin potential. In brief, wines aged in MTP barrel presented a higher density of CHON features in the lower mass range (100-350 Da), while wines aged in LTP barrel rather presented higher density in higher mass range (350-650 Da). This indicated that wines aged in MTP were richer in compounds like mono and di-amino acid peptides that mostly correlated with wine antioxidant capacity (evaluated as EC20) when LTP rather contained oligopeptides. The analysis of the wine volatile profile revealed differences between varieties as well as barrel tannin potential distinction. Thus, LTP presented higher contents in γ-octalactone, γ-nonalactone, furaneol, β-damascenone, furfural, gaiacol, E-whiskylactone and Z-whiskylactone. The present study provided evidence that new MTP oak wood barrels are the most suitable to extend the white wine oxidative stability and to maintain a varietal signature.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Kévin Billet, Nolwenn Wirgot, , Cécile Thibon, Maria Nikolantonaki, Regis D. Gougeon

Presenting author

Kévin Billet – Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France;

UMR A 02.102 PAM laboratoire PAPC AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France | INRA, ISVV, USC 1366 Œnologie, FR-33140 Villenave d’Ornon, France | UMR A 02.102 PAM laboratoire PAPC AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France | UMR A 02.102 PAM laboratoire PAPC AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France, ,

Contact the author

Keywords

UPLC Q Tof MS – GC MS/MS – wine oxidation – N containing compounds

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Towards stopping pesticides: survey identification of on-farm solutions

The winegrowing sector consumes a lot of pesticides. Changes in vineyard are necessary in order to reduce or even stop using pesticides, and thus limit their harmful impacts on health and on environment. To answer these issues, the VITAE project (2021-2026) aims at designing pesticide free grapevine systems in France. For that, we take an interest in the vineyards using solutions to strongly reduce chemicals but also biopesticides. We assume that such vineyards exist and that they are implementing solutions that could inspire the design of free- pesticide system.

Metabolomic fingerprint changes during the alcoholic fermentation at industrial level of Muscat of Alexandria grape must

Muscat of Alexandria is one of the oldest cultivars still existing, globally recognized for its distinctive aroma, and the primary grape variety cultivated in the Greek Island of Lemnos, yielding various white wines with designated origins.

Effect of cytokinin and auxin application on double cropping performance in Vitis vinifera: preliminary findings

Double cropping is a novel technique, driven by the extension of the growing season caused by global warming.

Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Le climat a de fortes implications sur le bon fonctionnement physiologique de la vigne et a besoin d’être quantifié afin de déterminer l’aptitude des régions à la culture de la vigne. Une méthode, qui pourrait éventuellement servir à prévoir l’aptitude des régions à la culture de la vigne, est proposée.

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].