WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Oak wood barrel tannin potential builds white wines oxidative stability and contributes to wine metabolomics fingerprint

Oak wood barrel tannin potential builds white wines oxidative stability and contributes to wine metabolomics fingerprint

Abstract

Considerable advances have been made in the chemical characterization of wine metabolites through its holistic study using both targeted and untargeted metabolomics approach. The metabolite pool is subject to an intense molecular dialogue which reinforces the wine complexity even after bottling. The wine oxidative stability might be understood as the intrinsic matrix capacity to prevent aroma deterioration due to oxidative processes. Barrel aging in oak wood is a key element of the elaboration of premium white wines. We have shown that the oak wood tannin potential can influence the wine character and its oxidative status. Here, we report the cross-analysis of the evolution of the antioxidant capacity and related metabolomic fingerprint for white wines made from three distinct varieties (Chardonnay, Semillon, Sauvignon) in barrels with distinct tannin potential. 

The sample set was made of 10 bottles of 2016 Chardonnay where 5 were raised in low tannin potential (LTP) barrels and 5 in medium tannin potential (MTP) barrels; 6 bottles of 2016 Sauvignon (3 LTP and 3 MTP). Fourteen bottles of blends of Sauvignon and Semillon of two vintages (6 bottles of 2016 and 8 of 2017) were also considered to compare new barrel aging to the aging in already used barrel. Wines were assayed for their ability to scavenge DPPH radical, and they were analyzed through untargeted UPLC-Q-Tof-MS and targeted GC-TQ-MS analyses. The untargeted metabolomics approach revealed molecular fingerprints (elemental composition determination) resulting from complex interactions between the wine matrix and the tannin potential. In brief, wines aged in MTP barrel presented a higher density of CHON features in the lower mass range (100-350 Da), while wines aged in LTP barrel rather presented higher density in higher mass range (350-650 Da). This indicated that wines aged in MTP were richer in compounds like mono and di-amino acid peptides that mostly correlated with wine antioxidant capacity (evaluated as EC20) when LTP rather contained oligopeptides. The analysis of the wine volatile profile revealed differences between varieties as well as barrel tannin potential distinction. Thus, LTP presented higher contents in γ-octalactone, γ-nonalactone, furaneol, β-damascenone, furfural, gaiacol, E-whiskylactone and Z-whiskylactone. The present study provided evidence that new MTP oak wood barrels are the most suitable to extend the white wine oxidative stability and to maintain a varietal signature.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Kévin Billet, Nolwenn Wirgot, , Cécile Thibon, Maria Nikolantonaki, Regis D. Gougeon

Presenting author

Kévin Billet – Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France;

UMR A 02.102 PAM laboratoire PAPC AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France | INRA, ISVV, USC 1366 Œnologie, FR-33140 Villenave d’Ornon, France | UMR A 02.102 PAM laboratoire PAPC AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France | UMR A 02.102 PAM laboratoire PAPC AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France, ,

Contact the author

Keywords

UPLC Q Tof MS – GC MS/MS – wine oxidation – N containing compounds

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The antioxidant properties of wine lees extracts in model wine

While the ethanol and tartaric acid contained in wine lees are typically recovered by distilleries, the remaining solid fraction (yeast biomass) is usually disposed of, thus negatively affecting the overall sustainability of the wine industry.

Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Kinetics of carbon allocation in the different plant sinks (root-shoot-fruit) competing in drought stressed and rehydrated grapevines have been investigated.

An online training tool for wine professionals around the world: from responsible service to a sustainable consumption of wine

Most consumers enjoy wine in moderation, however, there remains a minority that may develop risky drinking habits, potentially harming themselves and those around them. For the last fifteen years, a prime objective of the wine in moderation programme has been to educate and empower the wine sector and now for the first time, a central education tool has been developed, integrating the topic of moderate consumption horizontally in all wine activities. The entire wine value chain – from the producer to the salesperson to the restaurant service staff – can contribute to reduce harmful consumption and encourage responsible drinking patterns.

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

Oenological potential of indigenous greek grape varieties and their clones

Vine clone selection aims at the survival of clones with particularly desireable attributes for the production of high quality wines. The purpose of this research was to study the enological potential of the clones of Greek indigenous grape varieties over two vintages, 2018 and 2019.
METHODS: Two clones of the white grape varieties Moschofilero (E26 and E27), Assyrtiko (E11 and 16), Roditis (25E16 and 02E1E21) and two clones of the red grape varieties Xinomavro (19 and E2E30) and Agiorgitiko (03E40 and 41E47) were vinified under the same protocol for the white wines and common for the red wines in 2018 and 2019. The resulting products were studied for several enological parameters such as alcohol content, volatile acidity, pH, total phenolics, anthocyanins and tannins for the red wines, as well as browning tests for the white wines. The aroma profile of these ten samples was investigated through sensory analysis with intensity rating of individual attributes on a five-point scale by a trained panel.