WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Oak wood barrel tannin potential builds white wines oxidative stability and contributes to wine metabolomics fingerprint

Oak wood barrel tannin potential builds white wines oxidative stability and contributes to wine metabolomics fingerprint

Abstract

Considerable advances have been made in the chemical characterization of wine metabolites through its holistic study using both targeted and untargeted metabolomics approach. The metabolite pool is subject to an intense molecular dialogue which reinforces the wine complexity even after bottling. The wine oxidative stability might be understood as the intrinsic matrix capacity to prevent aroma deterioration due to oxidative processes. Barrel aging in oak wood is a key element of the elaboration of premium white wines. We have shown that the oak wood tannin potential can influence the wine character and its oxidative status. Here, we report the cross-analysis of the evolution of the antioxidant capacity and related metabolomic fingerprint for white wines made from three distinct varieties (Chardonnay, Semillon, Sauvignon) in barrels with distinct tannin potential. 

The sample set was made of 10 bottles of 2016 Chardonnay where 5 were raised in low tannin potential (LTP) barrels and 5 in medium tannin potential (MTP) barrels; 6 bottles of 2016 Sauvignon (3 LTP and 3 MTP). Fourteen bottles of blends of Sauvignon and Semillon of two vintages (6 bottles of 2016 and 8 of 2017) were also considered to compare new barrel aging to the aging in already used barrel. Wines were assayed for their ability to scavenge DPPH radical, and they were analyzed through untargeted UPLC-Q-Tof-MS and targeted GC-TQ-MS analyses. The untargeted metabolomics approach revealed molecular fingerprints (elemental composition determination) resulting from complex interactions between the wine matrix and the tannin potential. In brief, wines aged in MTP barrel presented a higher density of CHON features in the lower mass range (100-350 Da), while wines aged in LTP barrel rather presented higher density in higher mass range (350-650 Da). This indicated that wines aged in MTP were richer in compounds like mono and di-amino acid peptides that mostly correlated with wine antioxidant capacity (evaluated as EC20) when LTP rather contained oligopeptides. The analysis of the wine volatile profile revealed differences between varieties as well as barrel tannin potential distinction. Thus, LTP presented higher contents in γ-octalactone, γ-nonalactone, furaneol, β-damascenone, furfural, gaiacol, E-whiskylactone and Z-whiskylactone. The present study provided evidence that new MTP oak wood barrels are the most suitable to extend the white wine oxidative stability and to maintain a varietal signature.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Kévin Billet, Nolwenn Wirgot, , Cécile Thibon, Maria Nikolantonaki, Regis D. Gougeon

Presenting author

Kévin Billet – Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France;

UMR A 02.102 PAM laboratoire PAPC AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France | INRA, ISVV, USC 1366 Œnologie, FR-33140 Villenave d’Ornon, France | UMR A 02.102 PAM laboratoire PAPC AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France | UMR A 02.102 PAM laboratoire PAPC AgroSup Dijon, Université de Bourgogne, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France, ,

Contact the author

Keywords

UPLC Q Tof MS – GC MS/MS – wine oxidation – N containing compounds

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Differentiation and characterization of Spanish fortified wines with protected designation of origin based on volatiles using multivariate approaches

Spain is one of the main producers of high-quality fortified wines. Particularly some of them elaborated in Andalusia have acquired a great prestige for being unique due to their production in a specific geographical area with traditional methods, the grape variety used, the climate and the soil. Such is their distinguishing feature achieved that they have been protected by the European Union with the indication “Protected Designation of Origin” (PDO). Thus, there are four PDO of fortified wines in Andalucía (‘Condado de Huelva’, ‘Jerez Xérès Sherry’, ‘Manzanilla Sanlúcar de Barrameda’, and ‘Montilla-Moriles’). Furthermore, within each PDO,there are different categories according to their particular characteristics and winemaking conditions such as the aging process.

137Cs analysis by gamma spectrometry and its potential for dating Portuguese old wines

Analytical methods for dating wines often rely on assessing anthropogenic and cosmogenic radionuclides, including 14C and 137Cs [1,2].

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

Evolution and sensory contribution of ethyl acetate in sweet wines

Ethyl acetate (EtOAc) is the main ester present in all wines, generally produced by yeasts during alcoholic fermentation and sometimes by bacteria during barrel ageing. Its odor is characterized by solvent notes, which give wines their acescent note [1].

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.