WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Plant fibers in comparison with other fining agents for the re-duction of pesticide residues and the effect on the volitile profile of Austrian white and red wines.

Plant fibers in comparison with other fining agents for the re-duction of pesticide residues and the effect on the volitile profile of Austrian white and red wines.

Abstract

Pesticide residues in Austrian wines have so far been poorly documented. In 250 wines, 33 grape musts and 45 musts in fermentation, no limit values were exceeded, but in some cases high lev-els (>0.100 mg/l) of single residues were found, meaning that a reduction of these levels before bottling could make sense. In the course of this study, a white and a red wine were spiked with a mix of 23 pesticide residues from the group of fungicides (including botryticides), herbicides and insecticides. The influence of the following treatments on residue concentrations and volatile profiles were investigated: two activated charcoal products, a bentonite clay, two commer-cial mixed fining agents made of bentonite and charcoal, two yeast cell wall products, and a plant fiber-based novel filter additive. The results of this study show that all the agents tested reduced both residues and aromavolatile compounds in wine, with activated charcoal having the strongest effect and bentonite the weakest. The mixed agents and yeast wall products showed less aroma losses than charcoal products, but also lower residue reduction. Plant fibers showed good reduction of pesticides with moderate aroma damage, but these results need to be con-firmed under practical conditions.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Christian Philipp, Phillip Eder, Moritz Hartmann, Reinhard Eder

Presenting author

Christian Philipp – Dr.

Elsa Patzl-Fischerleitner | Mag | Dr.

Contact the author

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Using the fraction of transpirable soil water to estimate grapevine leaf water potential: comparing the classical statistical regression approach to machine learning algorithms

Weather uncertainty is forcing Mediterranean winegrowers to adopt new irrigation strategies to cope with water scarcity while ensuring a sustainable yield and improved berry and wine quality standards. Therefore, more accurate and high-resolution monitoring of soil water content and vine water status is a major concern. Leaf water potential measured at pre-dawn (PD) is considered to be in equilibrium with soil water potential and is highly correlated with soil water content at the soil depth where roots extract water.

Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Grapevine cultivars are vegetatively propagated to maintain their varietal attributes. However, spontaneous somatic variation emerges during prolonged periods of vegetative growth, providing an opportunity for the natural improvement of traditional grapevine cultivars. Notably, reduction in bunch compactness is a favorable trait in viticulture, offering advantages such as decreased susceptibility to bunch fungal diseases, and a more uniform ripening of berries. To unravel the genetic and developmental mechanisms behind bunch compactness variation, we examined a somatic variant of Tempranillo Tinto cultivar with loose bunches. We found that the mutant clone exhibits a ~50% reduction in pollen viability compared to typical Tempranillo clones.

Study of the volatil profile of minority white varieties

The genetic material preservation is a priority issue in winemaking research. The recovery of minority grape varieties can control the genetic erosion, contributing also to preserve wine typical characteristics. In D.O.Ca. Rioja (Spain) the number of grown white varieties has been very limited, representing Viura the 91% of the cultivated white grape area in 2005, while the others, Garnacha Blanca and Malvasía riojana, hardly were grown. For this reason, a recovery and characterization study of plant material was carried out in this region. In 2008, the results obtained allowed the authorization of three minority white varieties: Tempranillo Blanco, Maturana Blanca and Turruntés.

Vine plant material: situation and prospect

vine plant material is one of the major factors of terroir. The vine numbers over 1,000 species, of which the main cultivated species, Vitis vinifera, includes some 6,000 varieties. For the last forty years, selection has been carried out on these, mainly through clonal selection. However, today, only 300 varieties present one or more clones. A dozen varieties are considered as international. The extreme requirements of selection, in terms of diseases, provoke the elimination of the majority of selected plants. This approach to selection is not thorough because it focuses mainly on elimination of virosis and phytoplasma diseases.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.