WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Plant fibers in comparison with other fining agents for the re-duction of pesticide residues and the effect on the volitile profile of Austrian white and red wines.

Plant fibers in comparison with other fining agents for the re-duction of pesticide residues and the effect on the volitile profile of Austrian white and red wines.

Abstract

Pesticide residues in Austrian wines have so far been poorly documented. In 250 wines, 33 grape musts and 45 musts in fermentation, no limit values were exceeded, but in some cases high lev-els (>0.100 mg/l) of single residues were found, meaning that a reduction of these levels before bottling could make sense. In the course of this study, a white and a red wine were spiked with a mix of 23 pesticide residues from the group of fungicides (including botryticides), herbicides and insecticides. The influence of the following treatments on residue concentrations and volatile profiles were investigated: two activated charcoal products, a bentonite clay, two commer-cial mixed fining agents made of bentonite and charcoal, two yeast cell wall products, and a plant fiber-based novel filter additive. The results of this study show that all the agents tested reduced both residues and aromavolatile compounds in wine, with activated charcoal having the strongest effect and bentonite the weakest. The mixed agents and yeast wall products showed less aroma losses than charcoal products, but also lower residue reduction. Plant fibers showed good reduction of pesticides with moderate aroma damage, but these results need to be con-firmed under practical conditions.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Christian Philipp, Phillip Eder, Moritz Hartmann, Reinhard Eder

Presenting author

Christian Philipp – Dr.

Elsa Patzl-Fischerleitner | Mag | Dr.

Contact the author

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The use of remote sensing in South-African terroir research

The diversity of soil types in the Western Cape of South Africa leads to high levels of within-vineyard variability. Multispectral remote sensing has received a lot of attention recently in the South-African wine industry in an attempt to identify and deal with this variability.

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

Dalle zonazioni storiche alle “nuove forestazioni storiche produttive vitivinicole” per la valorizzazione delle cultivar e dei prodotti tipici ed originali dei Monti Iblei

Analisi sulle zonizzazioni storiche, sulle produzioni tipiche ed originali e sulla “forestazione classica” per impostare innovative zonazioni vitivinicole e dei prodotti tipici, originali attraverso la “Nuova forestazione storica produttiva”. Le recenti ricerche ed attività svolte sulle zonizzazioni storiche, sulle produzioni tipiche ed originali e sulla “forestazione classica” dei Monti Iblei (Ragusa) (I) hanno permesso di rilanciare le produzioni tipiche ed originali vitivinicole in un innovativo programma integrato tra zonazione (“Grande Zonazione”) e “Nuova forestazione storica produttiva” (“Grande Forestazione Produttiva”) di questo importante territorio.

Regulation of terpene production in methyl jasmonate treated cell-cultures

Terpenes are responsible for flavors and aromas of grapes, however, they also protect from radiation, participate in biotic stress and antioxidant mechanisms. The phytohormone methyl jasmonate (MeJA) mediates many of these stress responses and has been associated with increased terpene content in berries. Here, we generated transcriptomic data of Vitis vinifera cv. ‘Gamay’ cells treated with MeJA (100 μM) and cyclodextrins (50 μM) to understand these responses. Ontology analysis revealed that up-regulated genes (URGs) were enriched in jasmonic acid biosynthesis and signaling terms, as expected. Inspection of transcription factors (TFs) among URGs allowed us to study uncharacterized TFs.

The kinetics of grape aromatic precursors hydrolysis at three different temperatures

In neutral grapes, it is known that most aroma compounds are present as non-volatile
precursors.