WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Assessment of O2 consumption, a new tool to select bioprotection yeast strains

Assessment of O2 consumption, a new tool to select bioprotection yeast strains

Abstract

Reduction of sulfur dioxide during winemaking is a request from the wine industry. To replace sulfur dioxide, various alternatives exist, including bioprotection by yeast inoculation. This practice consists in adding non-Saccharomyces yeasts directly on the grapes or must. The antimicrobial properties of non-Saccharomyces yeasts have already been demonstrated due a to niche occupation of the grape must, resulting in a decrease of fungal and acetic bacteria communities. Furthermore, their potential antioxidant properties by consuming oxygen hence reducing the browning of the must and maintaining GSH concentration in white wines has also been described. However, only a few strains of two non-Saccharomyces species were considered in the previous studies while it is known that a significant intra-species genetic diversity exists [1]. In this study, inter and intra species diversity were considered to evaluate O2 consumption by yeast during the prefermentary steps.

First, laboratory assays were optimized and various technological parameters were analyzed such as the O2 concentration, the physiological state of yeasts, the yeast dosages and mixed-combination. Subsequently, 47 yeast strains distributed over 6 enological species and representing their genetic diversity were selected. In order to measure on line dissolved oxygen, a compact FireStingO2 oximeter (Pyroscience, Aix-La-Chappelle, Germany) was used. The kinetics of O2 consumption by yeast in a grape must model medium were evaluated and the consumption rates were calculated and expressed as mg of O2 consumed per liter and per number of living cells (determined by flow cytometry). Thus, an Oxygen Consumption Rate (OCR) per strain was obtained, ranging from 15 to 65 mg/L.

Results show that an interspecific diversity can be highlighted. Indeed, some species consumed significantly more O2 than others. The O2 consumption in grape must by yeasts could be linked to their respiratory metabolism and correlated with a Crabtree effect. Moreover, for some species, intraspecific diversity was obtained revealing a variability which could be interesting to further investigate. These results provide important data for selecting new bioprotection strains in winemaking.

References

1.Masneuf-Pomarede, I.; Bely, M.; Marullo, P.; Albertin, W. The Genetics of Non-Conventional Wine Yeasts: Current Knowledge and Future Challenges. Frontiers in microbiology 2016, 6, 1563.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Claudia Nioi, Joana Coulon, Isabelle Masneuf-Pomarède,

Presenting author

Sara Windholtz – Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon, France

Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon France, | Biolaffort, 11 Rue Aristide Bergès, 33270 Floirac, France, | Bordeaux Sciences Agro, 33170 Gradignan, France – Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon France

Contact the author

Keywords

O2 consumption – bioprotection – SO2 alternative- non-Saccharomyces yeasts

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Influence of organic plant treatment on the terroir of microorganisms

Several factors like vineyard site, climate, grape variety, ripeness, physical health of the grapes and pest management influence the populations of indigenous yeasts on grapes and later on in spontaneous fermentations.

Influence of pedoclimatic factors during berry ripening in Burgundy

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy.

Salubrity of environment and zoning process: first consideration on the radioactivity of vineyard soils

La salubrité du milieu et des aliments intervient de plus en plus lourdement, et souvent négativement, sur la santé de l’homme, aussi bien sur l’individu que sur la société tout entière.

Enhancing Monastrell wine quality in a climate change scenario: the role of cation exchange resins in addressing acidity challenges

Climate change significantly impacts vine and grape physiology, leading to changes in wine composition, including reduced titratable acidity, elevated ethanol content, and higher pH levels [1].

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role. Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application. We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.