WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Assessment of O2 consumption, a new tool to select bioprotection yeast strains

Assessment of O2 consumption, a new tool to select bioprotection yeast strains

Abstract

Reduction of sulfur dioxide during winemaking is a request from the wine industry. To replace sulfur dioxide, various alternatives exist, including bioprotection by yeast inoculation. This practice consists in adding non-Saccharomyces yeasts directly on the grapes or must. The antimicrobial properties of non-Saccharomyces yeasts have already been demonstrated due a to niche occupation of the grape must, resulting in a decrease of fungal and acetic bacteria communities. Furthermore, their potential antioxidant properties by consuming oxygen hence reducing the browning of the must and maintaining GSH concentration in white wines has also been described. However, only a few strains of two non-Saccharomyces species were considered in the previous studies while it is known that a significant intra-species genetic diversity exists [1]. In this study, inter and intra species diversity were considered to evaluate O2 consumption by yeast during the prefermentary steps.

First, laboratory assays were optimized and various technological parameters were analyzed such as the O2 concentration, the physiological state of yeasts, the yeast dosages and mixed-combination. Subsequently, 47 yeast strains distributed over 6 enological species and representing their genetic diversity were selected. In order to measure on line dissolved oxygen, a compact FireStingO2 oximeter (Pyroscience, Aix-La-Chappelle, Germany) was used. The kinetics of O2 consumption by yeast in a grape must model medium were evaluated and the consumption rates were calculated and expressed as mg of O2 consumed per liter and per number of living cells (determined by flow cytometry). Thus, an Oxygen Consumption Rate (OCR) per strain was obtained, ranging from 15 to 65 mg/L.

Results show that an interspecific diversity can be highlighted. Indeed, some species consumed significantly more O2 than others. The O2 consumption in grape must by yeasts could be linked to their respiratory metabolism and correlated with a Crabtree effect. Moreover, for some species, intraspecific diversity was obtained revealing a variability which could be interesting to further investigate. These results provide important data for selecting new bioprotection strains in winemaking.

References

1.Masneuf-Pomarede, I.; Bely, M.; Marullo, P.; Albertin, W. The Genetics of Non-Conventional Wine Yeasts: Current Knowledge and Future Challenges. Frontiers in microbiology 2016, 6, 1563.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Claudia Nioi, Joana Coulon, Isabelle Masneuf-Pomarède,

Presenting author

Sara Windholtz – Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon, France

Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon France, | Biolaffort, 11 Rue Aristide Bergès, 33270 Floirac, France, | Bordeaux Sciences Agro, 33170 Gradignan, France – Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, F-33140 Villenave d’Ornon France

Contact the author

Keywords

O2 consumption – bioprotection – SO2 alternative- non-Saccharomyces yeasts

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Impact of acidification by fumaric acid at vatting on Cabernet-Sauvignon wine during winemaking

Acidity of grape berries is lowered due to climate changes (1), resulting in musts and wines with higher pHs. These higher pHs induce microbiological instability

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

The collection of micro-climatic information through a mobile robot

Temperature fluctuations and, in general, climatic conditions can significantly affect the chemical composition of grapes and, in turn, the taste and aromas of wine.

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1, was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants.