WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Posters 9 Organoleptic and analytical impacts of the color of glass of the bottles on Chasselas wine

Organoleptic and analytical impacts of the color of glass of the bottles on Chasselas wine

Abstract

This study was performed on Chasselas wine to assess the impact of exposure to wine light according to several glass color of bottles. The aim was to highlight any differences whether from an organoleptic or analytical point of view depending on the color. For this, four different shades were compared, dead leaf, green, cinnamon and transparent. A control, not treated with light, was also included in the study. Several tests were carried out with different exposure times in boxes as well as in stores. The bottles were exposed 7 days, 4 days as well as 2 days in box but also 7 days in store. At the end of each test the different modalities were tasted by an expert panel in order to observe any differences between the tint modalities. As a result of these experiments, it was observed that organoleptic differences significant appeared after 2 days of exposure, in particular on the olfactory notes of the reduction. The transparent modality was seen to be significantly more intense on reduction scores compared to other modalities, including the witness in particular. These differences were also observed during all the tests even that of 7 days of exposure in store where we would have thought that there would be no difference. Overall, the control and cinnamon modalities are generally perceived to have more intense notes on the fruity, floral descriptors but less intense for reduction than the transparent shade. For the dead leaf and green modalities, the results are more contrasted and sometimes approach those of the control and other times closer to the transparent modality. Regarding the analytical results, similar conclusions could be drawn with respect to the sensory tests. In fact, the transparent modality is the variant which has an absorbance of the UV-C solution that is twice as high as the other modalities after the 7-day treatment in the chamber. In view of the sensory and analytical results obtained in this study, the choice of the color of the bottles turns out to be an essential element in influencing the intrinsic and extrinsic characteristics of a wine. In order to preserve the qualities of the wine over the medium and long term, dark and opaque tints should be favored. Conversely, a transparent glass could be recommended in the case of rapid consumption of the wine after bottling.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Pierrick Rebenaque, Ombeline Guillemier, Benoit Bach

Presenting author

Pierrick Rebenaque – Changins

Changins | Changins

Contact the author

Keywords

Sensory-Analytic-Color of glass-UV-Wine

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Managing changes in taste: lessons from champagne in britain 1800-1914

This paper focuses on how taste in wine (and other foods) changes and the implications of this process for producers and merchants. It draws primarily on the changing taste of and taste for champagne in Britain in the 19th century. Between 1850 and 1880 champagne went from a dosage level of around 20% (20 grams sugar / litre) to 0%. Champagne became the ‘dinner wine of the elite – drunk with roast meat and savoury dishes. Contemporaries accepted that while most people could distinguish the taste of good champagne from that of bad, very few could distinguish very good from good.

Benefits and risks of the utilization of grape pomace as organic fertilizers

Rhineland-Palatinate is Germany’s largest wine growing region. The recently launched collaborative project in the frame of the ‘Carl-Zeiss-Stiftungs-Kooperationsfonds für Nachhaltigkeitsforschung’ focusses on the risk-benefit assessment of the use of grape pomace (GP) from the region ‘Pfalz’ in Rhineland-Palatinate as a natural fertilizer

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Effect of ozone application for low-input postharvest dehydration of wine grapes

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g., sweet, dry/reinforced).

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.