WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Posters 9 Organoleptic and analytical impacts of the color of glass of the bottles on Chasselas wine

Organoleptic and analytical impacts of the color of glass of the bottles on Chasselas wine

Abstract

This study was performed on Chasselas wine to assess the impact of exposure to wine light according to several glass color of bottles. The aim was to highlight any differences whether from an organoleptic or analytical point of view depending on the color. For this, four different shades were compared, dead leaf, green, cinnamon and transparent. A control, not treated with light, was also included in the study. Several tests were carried out with different exposure times in boxes as well as in stores. The bottles were exposed 7 days, 4 days as well as 2 days in box but also 7 days in store. At the end of each test the different modalities were tasted by an expert panel in order to observe any differences between the tint modalities. As a result of these experiments, it was observed that organoleptic differences significant appeared after 2 days of exposure, in particular on the olfactory notes of the reduction. The transparent modality was seen to be significantly more intense on reduction scores compared to other modalities, including the witness in particular. These differences were also observed during all the tests even that of 7 days of exposure in store where we would have thought that there would be no difference. Overall, the control and cinnamon modalities are generally perceived to have more intense notes on the fruity, floral descriptors but less intense for reduction than the transparent shade. For the dead leaf and green modalities, the results are more contrasted and sometimes approach those of the control and other times closer to the transparent modality. Regarding the analytical results, similar conclusions could be drawn with respect to the sensory tests. In fact, the transparent modality is the variant which has an absorbance of the UV-C solution that is twice as high as the other modalities after the 7-day treatment in the chamber. In view of the sensory and analytical results obtained in this study, the choice of the color of the bottles turns out to be an essential element in influencing the intrinsic and extrinsic characteristics of a wine. In order to preserve the qualities of the wine over the medium and long term, dark and opaque tints should be favored. Conversely, a transparent glass could be recommended in the case of rapid consumption of the wine after bottling.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Pierrick Rebenaque, Ombeline Guillemier, Benoit Bach

Presenting author

Pierrick Rebenaque – Changins

Changins | Changins

Contact the author

Keywords

Sensory-Analytic-Color of glass-UV-Wine

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Activation of retrotransposition in grapevine

Retrotransposons, particularly of the Ty-Copia and Ty-Gypsy superfamilies, represent the most abundant and widespread transposons in many plant genomes. Grapevine is no exception and it is clear that these mobile elements have played a major role in the evolution of Vitaceae genomes. While speculation abounds around the possible role of transposons in plant genomes, outside of the rather obvious involvement of retrotransposition in fueling genome expansion, there is little clarity of the actual role these elements have in both developing new genetic variation and in modulating epigenetic responses within genomes to changing climate. To this end we have been exploring de-novo assembled Sauvignon blanc and Pinot noir genomes with a view to catalogue retrotransposon loci to determine the structural intactness and thus age of insertion variation across a small number of clonal linages of these 2 varietals in an attempt to identify ‘live’ TE loci.

Carbon sequestration in vineyard soils: biomass utilization in a climate change scenario–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard soils under a climate change scenario.

Dialing in grapevine water stress indicators to better reflect holistic stress responses

Current remote sensing strategies rely heavily on reflectance data and energy balance modelling using thermal imagery to estimate crop water use and stress. These approaches show great promise for driving precision management decisions, but still require work to better understand how detected changes relate to meaningful physiological changes. Under water stress, grapevines exhibit a range of responses involving both biological and physical changes within leaves and canopies.

Utilizing ozone for the management of powdery mildew (Erysiphe necator Schwein.) in vineyards: potential and challenges

Powdery mildew, caused by fungal pathogens, poses a significant threat to grapevines in the DOCa Rioja region. In efforts to improve control strategies while reducing reliance on conventional phytosanitary products, ozone could constitute a potential alternative. However, it has short persistence, thus requiring frequent treatments. This study aimed to assess the suitability of ozone as an active substance for controlling powdery mildew within a phytosanitary strategy aimed at reducing conventional phytosanitary product usage. The strategy integrating ozone with conventional products yielded powdery mildew levels comparable to conventional treatments in both disease incidence and severity.