WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Posters 9 Organoleptic and analytical impacts of the color of glass of the bottles on Chasselas wine

Organoleptic and analytical impacts of the color of glass of the bottles on Chasselas wine

Abstract

This study was performed on Chasselas wine to assess the impact of exposure to wine light according to several glass color of bottles. The aim was to highlight any differences whether from an organoleptic or analytical point of view depending on the color. For this, four different shades were compared, dead leaf, green, cinnamon and transparent. A control, not treated with light, was also included in the study. Several tests were carried out with different exposure times in boxes as well as in stores. The bottles were exposed 7 days, 4 days as well as 2 days in box but also 7 days in store. At the end of each test the different modalities were tasted by an expert panel in order to observe any differences between the tint modalities. As a result of these experiments, it was observed that organoleptic differences significant appeared after 2 days of exposure, in particular on the olfactory notes of the reduction. The transparent modality was seen to be significantly more intense on reduction scores compared to other modalities, including the witness in particular. These differences were also observed during all the tests even that of 7 days of exposure in store where we would have thought that there would be no difference. Overall, the control and cinnamon modalities are generally perceived to have more intense notes on the fruity, floral descriptors but less intense for reduction than the transparent shade. For the dead leaf and green modalities, the results are more contrasted and sometimes approach those of the control and other times closer to the transparent modality. Regarding the analytical results, similar conclusions could be drawn with respect to the sensory tests. In fact, the transparent modality is the variant which has an absorbance of the UV-C solution that is twice as high as the other modalities after the 7-day treatment in the chamber. In view of the sensory and analytical results obtained in this study, the choice of the color of the bottles turns out to be an essential element in influencing the intrinsic and extrinsic characteristics of a wine. In order to preserve the qualities of the wine over the medium and long term, dark and opaque tints should be favored. Conversely, a transparent glass could be recommended in the case of rapid consumption of the wine after bottling.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Pierrick Rebenaque, Ombeline Guillemier, Benoit Bach

Presenting author

Pierrick Rebenaque – Changins

Changins | Changins

Contact the author

Keywords

Sensory-Analytic-Color of glass-UV-Wine

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Electrochemical approaches in wine analysis 

There is a high demand in the wine industry for analytical methods able to provide useful information to support the decision-making process in the vineyard and in the winery. Ideally these methods should be rapid (e.g.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

The adaptative capacity of a viticultural area (Valle Telesina, Southern Italy) to climate changes

The viticulture aiming at the production of high quality wine is very important for the landscape conservation, because it allows to combine high farmer income with soil conservation

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

Evaluation of the efficiency of dialysis membranes in the wine dealcoholization process

The global wine production is continuously evolving to meet the new demands and preferences of consumers. in this evolving scenario, it’s important to determine which trends will be short-lived and which will remain over time. The promotion of healthier habits has encouraged consumers to try to find alternatives with low or no alcohol content. The challenge for the industry is to produce an alcohol-free wine that retains the familiar aromas and mouthfeel of traditional wine but without alcohol. Ethanol is the most abundant compound in wine, excluding water.