WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Posters 9 Organoleptic and analytical impacts of the color of glass of the bottles on Chasselas wine

Organoleptic and analytical impacts of the color of glass of the bottles on Chasselas wine

Abstract

This study was performed on Chasselas wine to assess the impact of exposure to wine light according to several glass color of bottles. The aim was to highlight any differences whether from an organoleptic or analytical point of view depending on the color. For this, four different shades were compared, dead leaf, green, cinnamon and transparent. A control, not treated with light, was also included in the study. Several tests were carried out with different exposure times in boxes as well as in stores. The bottles were exposed 7 days, 4 days as well as 2 days in box but also 7 days in store. At the end of each test the different modalities were tasted by an expert panel in order to observe any differences between the tint modalities. As a result of these experiments, it was observed that organoleptic differences significant appeared after 2 days of exposure, in particular on the olfactory notes of the reduction. The transparent modality was seen to be significantly more intense on reduction scores compared to other modalities, including the witness in particular. These differences were also observed during all the tests even that of 7 days of exposure in store where we would have thought that there would be no difference. Overall, the control and cinnamon modalities are generally perceived to have more intense notes on the fruity, floral descriptors but less intense for reduction than the transparent shade. For the dead leaf and green modalities, the results are more contrasted and sometimes approach those of the control and other times closer to the transparent modality. Regarding the analytical results, similar conclusions could be drawn with respect to the sensory tests. In fact, the transparent modality is the variant which has an absorbance of the UV-C solution that is twice as high as the other modalities after the 7-day treatment in the chamber. In view of the sensory and analytical results obtained in this study, the choice of the color of the bottles turns out to be an essential element in influencing the intrinsic and extrinsic characteristics of a wine. In order to preserve the qualities of the wine over the medium and long term, dark and opaque tints should be favored. Conversely, a transparent glass could be recommended in the case of rapid consumption of the wine after bottling.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Pierrick Rebenaque, Ombeline Guillemier, Benoit Bach

Presenting author

Pierrick Rebenaque – Changins

Changins | Changins

Contact the author

Keywords

Sensory-Analytic-Color of glass-UV-Wine

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Budburst delay and berry ripening after vegetal oil application in Austria

Occurrence of freezing temperatures in early spring when grapevine shoots are developing is termed late frost in viticulture. Young green tissues are very sensible to temperatures below zero and damages often lead to important yield and quality losses such as the case in Europe in 2017. An indirect method to avoid late frost damage in vineyards consist in delaying the budburst. Previous research reported similar effects by applying vegetal oil on dormant buds. Here, we tested the application of rapeseed vegetal oil during late winter to delay the budburst on two V.vinifera cultivars of interest in Austria, Grüner Veltliner (GV) and Zweigelt (ZW).

Pruned vine biomass exclusion from a clay loam vineyard soil – examining the impact on physical/chemical properties

The wine industry worldwide faces increasing challenges to achieve sustainable levels of carbon emission mitigation. This project seeks to establish the feasibility of harvesting winter pruned vineyard biomass (PVB) for potential use in carbon footprint reduction, through its use as a renewable biofuel for energy production. In order to make this recommendation, technical issues such as the potential environmental impact, chemical composition and fuel suitability, and logistical challenges of harvesting biomass needs to be understood to compare with the results from similar studies. Of particular interest is the role PVB plays as a carbon source in vineyard soils and what effect annual removal might have on soil carbon sequestration. A preliminary trial was established in the Waite Campus vineyard (University of Adelaide) to test current management strategies. Vines are grown in a Eutrophic, Red Dermosol clay loam soil with well managed midrow swards. A comparison was undertaken of mid-row treatments in two 0.25 Ha blocks (Shiraz and Semillon), including annual cultivation for seed bed preparation, the deliberate exclusion of PVB (25 years) and incorporation of PVB (13 years) at an average of 3.4 and 5.5 Mg/Ha-1 for Shiraz and Semillon respectively. In both 0-10cm and 10-30cm soil core sample depths, combined soil carbon % measures in the desired range of 1.80 to 3.50, were not significantly different between treatments or cultivars and yielded an estimated 42 Mg/ha-1 of sequestered soil carbon. Other key physical and chemical measures were likewise not significantly different between treatments. Preliminary results suggest that in a temperate zone vineyard, managed such as the one used in this study, there is no long term negative impact on soil carbon sequestration through removing PVB. This implies that growers could confidently harvest PVB for use in several end fates including as a bio fuel.

Grassland and patch scale diversity in supporting avian diversity and potential ecosystem services

The composition and structure of vineyard landscapes significantly affect bird communities and the ecosystem services they provide in agriculture.

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

Unraveling grapevine resilience to water and nutrient limitations

Water and nutrient availability significantly impact crop yield, thus the application of sustainable strategies towards efficient water use and nutrient absorption by plants is needed.