WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Posters 9 The development of a simple electrochemical method based on molecularly imprinted polymers for the selective determination of caffeic acid in wine

The development of a simple electrochemical method based on molecularly imprinted polymers for the selective determination of caffeic acid in wine

Abstract

Caffeic acid (CA) is an antioxidant of great importance in the food sector, such as wine, where it acts as a marker of wine ageing, as well as in the health sector due to its antioxidant properties and beneficial effects including the prevention of inflammation, cancer, neurodegenerative diseases, and diabetes. A simple and fast electrochemical method was developed for the determination of caffeic acid in a hydroalcoholic medium, based on a molecular imprinted polymer (MIP) in order to highlight the specificity and selectivity of the polymer. A MIP specific to CA was synthesized by the radical polymerization process, using N-phenylacrylamide (N-PAA), tetraethoxysilane (TEOS), ethylene glycol dimerhacrylate (EGDMA) and azobisisobutyronitrile (AIBN) in the presence of CA as template molecule and under thermal conditions (60°C). Screen-printed carbon electrodes were used in the electrochemical measurements without any pre-treatment or modification of their surface, in order to ensure the simplicity of the method. Cyclic voltammograms were applied at a scan rate of 50mV/s, from -0.4 to 0.8 V, and showed that, at pH3, the polymer presented good stability and repeatability regarding CA determination. In addition, it exhibited high selectivity towards CA compared to other interferents with similar structures. Furthermore, the polymer was successfully tested for the detection of CA in wine.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Marie EL HACHEM, Elias Bou-Maroun, Richard G. Maroun, Philippe Cayot, Maher Abboud

Presenting author

Marie EL HACHEM – UMR PAM, Procédés Alimentaires et Microbiologiques, Bourgogne Franche-Comté University, AgroSup Dijon, France

UMR PAM, Procédés Alimentaires et Microbiologiques, Bourgogne Franche-Comté University, AgroSup Dijon, France | Centre d’Analyses et de Recherche, Laboratoire CTA, UR TVA, Faculty of Sciences, Saint Joseph University, Beirut, Lebanon | UMR PAM, Procédés Alimentaires et Microbiologiques, Bourgogne Franche-Comté University, AgroSup Dijon, France | UEGP Unité Environnement, Génomique et Protéonique, Faculty of Sciences, Saint Joseph University, Beirut, Lebanon, ,

Contact the author

Keywords

Caffeic acid- health benefits-electrochemistry-molecularly imprinted polymer-screen-printed carbon electrodes

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Effect of ozone application for low-input postharvest dehydration of wine grapes

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g., sweet, dry/reinforced).

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).

Long-term vineyard sustainability index

The impact of viticulture on soil can be determined by comparing the biophysical properties that represent soil health at a particular site and depth with those same properties in soil considered to represent the ‘pre-vineyard’ state (the headland). Information gathered by this method shows the changes in soil properties following the change to viticulture depend on individual vineyard management and environment.

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.