WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Posters 9 The development of a simple electrochemical method based on molecularly imprinted polymers for the selective determination of caffeic acid in wine

The development of a simple electrochemical method based on molecularly imprinted polymers for the selective determination of caffeic acid in wine

Abstract

Caffeic acid (CA) is an antioxidant of great importance in the food sector, such as wine, where it acts as a marker of wine ageing, as well as in the health sector due to its antioxidant properties and beneficial effects including the prevention of inflammation, cancer, neurodegenerative diseases, and diabetes. A simple and fast electrochemical method was developed for the determination of caffeic acid in a hydroalcoholic medium, based on a molecular imprinted polymer (MIP) in order to highlight the specificity and selectivity of the polymer. A MIP specific to CA was synthesized by the radical polymerization process, using N-phenylacrylamide (N-PAA), tetraethoxysilane (TEOS), ethylene glycol dimerhacrylate (EGDMA) and azobisisobutyronitrile (AIBN) in the presence of CA as template molecule and under thermal conditions (60°C). Screen-printed carbon electrodes were used in the electrochemical measurements without any pre-treatment or modification of their surface, in order to ensure the simplicity of the method. Cyclic voltammograms were applied at a scan rate of 50mV/s, from -0.4 to 0.8 V, and showed that, at pH3, the polymer presented good stability and repeatability regarding CA determination. In addition, it exhibited high selectivity towards CA compared to other interferents with similar structures. Furthermore, the polymer was successfully tested for the detection of CA in wine.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Marie EL HACHEM, Elias Bou-Maroun, Richard G. Maroun, Philippe Cayot, Maher Abboud

Presenting author

Marie EL HACHEM – UMR PAM, Procédés Alimentaires et Microbiologiques, Bourgogne Franche-Comté University, AgroSup Dijon, France

UMR PAM, Procédés Alimentaires et Microbiologiques, Bourgogne Franche-Comté University, AgroSup Dijon, France | Centre d’Analyses et de Recherche, Laboratoire CTA, UR TVA, Faculty of Sciences, Saint Joseph University, Beirut, Lebanon | UMR PAM, Procédés Alimentaires et Microbiologiques, Bourgogne Franche-Comté University, AgroSup Dijon, France | UEGP Unité Environnement, Génomique et Protéonique, Faculty of Sciences, Saint Joseph University, Beirut, Lebanon, ,

Contact the author

Keywords

Caffeic acid- health benefits-electrochemistry-molecularly imprinted polymer-screen-printed carbon electrodes

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

The use of viticultural and oenological performance of grapevines to identify terroirs: the example of Sauvignon blanc in Stellenbosch

Identification and characterisation of terroirs depends on knowledge of environmental parameters, functioning of the grapevine and characteristics of the final product. A network of plots of Sauvignon blanc was delimited in commercial vineyards in proximity to weather stations at 20 localities and their viticultural and oenological response was monitored for a period of seven years. These experimental plots were further characterised with respect to climate, soil and topography.

Prediction of astringency in red wine using tribology approach to study in-mouth perception

AIM Astringency is described as a ‘dry puckering‐like sensation’ following consumption of tannins1 that affect consumer preference of foods and beverages, including red wine2. To improve the understanding of astringency, which is a complex interaction due to multiple mechanisms occurring simultaneously, further studies are needed. In this view, oral tribology is considered a useful technique for beverage study to evaluate the thin-film lubrication properties of saliva resulting in oral friction‐related sensations3. The aim of this study was to examine the film behavior of selected protein-based fluids under controlled friction conditions, to understand polyphenol-protein interactions involved in the sensation of astringency.

Phenolic compounds present in natural haze protein of Sauvignon white wine

The aim of this work was the identification and quantification of polyphenols present in natural precipitate of a Sauvignon wine. Phenol analysis in wine precipitate was based on acid hydrolysis, CG- MS after derivatization, and LC-MS.

Reduce sulfur dioxide addition using a natural polymer chitosan phytate

Most oxidation reactions in wine require iron as a catalyst. The iron content of wine has decreased greatly in recent decades due to the use of low or no release cellar materials; however, in some cases it is still necessary to adopt winemaking practices to remove excess iron from wine, prevent its oxidation, and be able to reduce the addition of sulfur dioxide and other antioxidants.