WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 FIRST APPLICATION OF LACHANCEA THERMOTOLERANS IN THE FERMENTATION OF “VINO SANTO” AS BIOLOGICHAL ACIDIFIER.

FIRST APPLICATION OF LACHANCEA THERMOTOLERANS IN THE FERMENTATION OF “VINO SANTO” AS BIOLOGICHAL ACIDIFIER.

Abstract

The exploitation of secondary metabolic pathways of non-Saccharomyces yeasts is a promising approach to protect traditional wines from the ongoing climate change, which can alter their peculiar features by modifying the chemical composition of grape musts. In this regard, an interesting example is the sequential inoculum of Lachancea thermotolerans and Saccharomyces. Cerevisiae. The aim of the sequential inoculum is to increase titratable acidity by lactic acid accumulation, to lower pH and to reduce the alcohol and acetic acid content in wine.

In this work, grapes of Italian’s variety Garganega were dried and crushed according to the traditional winemaking protocol to produce Vino Santo, a sweet wine produced from withered grapes in different wine appellations in Italy. The performances of a traditional inoculum of S. cerevisiae were compared to that of a sequential inoculum with a commercial strain of L. thermotolerans followed by S. cerevisiae when the 30% of the alcoholic fermentation was reached. Furthermore, different nitrogen supplementation protocols (with yeast autolysates and diammonium phosphate) were tested, considering that the lack of nutrients is one of the main criticism in the fermentation of must coming from dried grapes.

Results demonstrated that L. thermotolerans is capable to acidify wines in the fermentation of must at high osmotic pressure (~400 g/L of reducing sugars), in particular during the first stages of winemaking, thus contributing to the microbial control. The sensory evaluation performed by a panel of eleven winemakers showed that L. thermotolerans balanced the mouthfeel of wines with a high sugar residue. The nature and timing of the nutritional supplementation also affected the pH and the sensory evaluation of wines. This winemaking practice is crucial to regulate yeast metabolism, managing the competition among different species that modify the quality perception of wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Raffaele Guzzon, Tomas Roman, Adelaide Gallo, Mario Malacarne

Fondazione Edmund Mach

Contact the author

Keywords

Lachancea thermotolerans – Non-Saccharomyces yeast – Vino Santo – Sweet wine – Biological acidification

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Study of the volatil profile of minority white varieties

The genetic material preservation is a priority issue in winemaking research. The recovery of minority grape varieties can control the genetic erosion, contributing also to preserve wine typical characteristics. In D.O.Ca. Rioja (Spain) the number of grown white varieties has been very limited, representing Viura the 91% of the cultivated white grape area in 2005, while the others, Garnacha Blanca and Malvasía riojana, hardly were grown. For this reason, a recovery and characterization study of plant material was carried out in this region. In 2008, the results obtained allowed the authorization of three minority white varieties: Tempranillo Blanco, Maturana Blanca and Turruntés.

What is the best soil for Sangiovese quality wine?

Sangiovese is one of the main cultivar in the Italian ampelographic outline and it occupies more than 60% of total vineyard surface in the Tuscany region. It is also well known that the environmental

Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Sterols are a class of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality (Daum et al., 1998).

Validation of a high-throughput method for the quantification of volatile carbonyl compounds in wine and its use in accelerated ageing experiments

the aim of this study was the optimization and validation of a robust and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines

Phenolic extraction and mechanical properties of skins and seeds during maceration of four main italian red wine grape varieties

AIM: Red grape varieties are characterized by different phenolic contents (prominently tannins and anthocyanins) found in skins and seeds.