WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 FIRST APPLICATION OF LACHANCEA THERMOTOLERANS IN THE FERMENTATION OF “VINO SANTO” AS BIOLOGICHAL ACIDIFIER.

FIRST APPLICATION OF LACHANCEA THERMOTOLERANS IN THE FERMENTATION OF “VINO SANTO” AS BIOLOGICHAL ACIDIFIER.

Abstract

The exploitation of secondary metabolic pathways of non-Saccharomyces yeasts is a promising approach to protect traditional wines from the ongoing climate change, which can alter their peculiar features by modifying the chemical composition of grape musts. In this regard, an interesting example is the sequential inoculum of Lachancea thermotolerans and Saccharomyces. Cerevisiae. The aim of the sequential inoculum is to increase titratable acidity by lactic acid accumulation, to lower pH and to reduce the alcohol and acetic acid content in wine.

In this work, grapes of Italian’s variety Garganega were dried and crushed according to the traditional winemaking protocol to produce Vino Santo, a sweet wine produced from withered grapes in different wine appellations in Italy. The performances of a traditional inoculum of S. cerevisiae were compared to that of a sequential inoculum with a commercial strain of L. thermotolerans followed by S. cerevisiae when the 30% of the alcoholic fermentation was reached. Furthermore, different nitrogen supplementation protocols (with yeast autolysates and diammonium phosphate) were tested, considering that the lack of nutrients is one of the main criticism in the fermentation of must coming from dried grapes.

Results demonstrated that L. thermotolerans is capable to acidify wines in the fermentation of must at high osmotic pressure (~400 g/L of reducing sugars), in particular during the first stages of winemaking, thus contributing to the microbial control. The sensory evaluation performed by a panel of eleven winemakers showed that L. thermotolerans balanced the mouthfeel of wines with a high sugar residue. The nature and timing of the nutritional supplementation also affected the pH and the sensory evaluation of wines. This winemaking practice is crucial to regulate yeast metabolism, managing the competition among different species that modify the quality perception of wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Raffaele Guzzon, Tomas Roman, Adelaide Gallo, Mario Malacarne

Fondazione Edmund Mach

Contact the author

Keywords

Lachancea thermotolerans – Non-Saccharomyces yeast – Vino Santo – Sweet wine – Biological acidification

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

How does aromatic composition of red wines, resulting from varieties adapted to climate change, modulate fruity aroma?

One of the major issues for the wine sector is the impact of climate change linked to the increasing temperatures which affects physicochemical parameters of the grape varieties planted in Bordeaux vineyard and consequently, the quality of wine. In some varietals, the attenuation of their fresh fruity character is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive strategy on climate change, some winegrowers have initiated changes in the Bordeaux blend of vine varieties [2]. This study intends to explore the fruitiness in wines produced from grape varieties adapted to the future climate of Bordeaux. 10 commercial single–varietal wines from 2018 vintage made from the main grape varieties in the Bordeaux region (Cabernet franc, Cabernet-Sauvignon and Merlot) as well as from indigenous grape varieties from the Mediterranean basin, such as Cyprus (Yiannoudin), France (Syrah), Greece (Agiorgitiko and Xinomavro), Portugal (Touriga Nacional) and Spain (Garnacha and Tempranillo), were selected among 19 samples using sensory descriptive analyses. Both sensory and instrumental analyses were coupled, to investigate their fruity aroma expression. For sensory analysis, samples were prepared from wine, using a semi preparative HPLC method which preserves wine aroma and isolates fruity characteristics in 25 specific fractions [3,4]. Fractions of interest with intense fruity aromas were sensorially selected for each wine by a trained panel and mixed with ethanol and microfiltered water to obtain fruity aromatic reconstitutions (FAR) [5]. A free sorting task was applied to categorize FAR according to their similarities or dissimilarities, and different clusters were highlighted. Instrumental analysis of the different FAR and wines demonstrated variations in their molecular composition. Results obtained from sensory and gas chromatography analysis enrich the knowledge of the fruity expression of red wines from “new” grape varieties opening up new perspectives in wine technology, including blending, thus providing new tools for producers.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

Impact of winemaking practises on the formation of pinking

The pinking is a phenomenon that can occur in white wine produced with white grape causing the color change from yellow to red-salmon hue. Even if its appearance is highly variable and dependent to the vintage, the wines from certain grape varieties, such as Sauvignon blanc, Chardonnay, Riesling and Trebbiano di Lugana, have been identified to be more susceptible to the pinking.

Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Promoting sustainable agricultural practices is one of the challenges of the last decades. Organic and biodynamic viticulture can be an alternative to intensive viticulture, furthermore contributing to reduction of impact on environment and human health and guaranteeing soil preservation and quality products1. The aim of this experimentation was to evaluate the medium and long-term effects of different agronomic practices in viticulture on nutrient availability and heavy metal accumulation in soil.

Pharmacological basis of the J-shaped curve in biological effects of wine

The classical pharmacological model assumes that the effect of a drug is proportional to the fraction of receptors occupied by the drug. In the simplest circumstances, the relationship between dose of a drug and response, when plotted on a logarithmic scale for drug concentration, is described by a sigmoidal curve. It presumes the existence of a threshold dose, below which no biological effect appears, and a maximal response in the form of a plateau, when a further increase in the dose of drug has no effect.