WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 FIRST APPLICATION OF LACHANCEA THERMOTOLERANS IN THE FERMENTATION OF “VINO SANTO” AS BIOLOGICHAL ACIDIFIER.

FIRST APPLICATION OF LACHANCEA THERMOTOLERANS IN THE FERMENTATION OF “VINO SANTO” AS BIOLOGICHAL ACIDIFIER.

Abstract

The exploitation of secondary metabolic pathways of non-Saccharomyces yeasts is a promising approach to protect traditional wines from the ongoing climate change, which can alter their peculiar features by modifying the chemical composition of grape musts. In this regard, an interesting example is the sequential inoculum of Lachancea thermotolerans and Saccharomyces. Cerevisiae. The aim of the sequential inoculum is to increase titratable acidity by lactic acid accumulation, to lower pH and to reduce the alcohol and acetic acid content in wine.

In this work, grapes of Italian’s variety Garganega were dried and crushed according to the traditional winemaking protocol to produce Vino Santo, a sweet wine produced from withered grapes in different wine appellations in Italy. The performances of a traditional inoculum of S. cerevisiae were compared to that of a sequential inoculum with a commercial strain of L. thermotolerans followed by S. cerevisiae when the 30% of the alcoholic fermentation was reached. Furthermore, different nitrogen supplementation protocols (with yeast autolysates and diammonium phosphate) were tested, considering that the lack of nutrients is one of the main criticism in the fermentation of must coming from dried grapes.

Results demonstrated that L. thermotolerans is capable to acidify wines in the fermentation of must at high osmotic pressure (~400 g/L of reducing sugars), in particular during the first stages of winemaking, thus contributing to the microbial control. The sensory evaluation performed by a panel of eleven winemakers showed that L. thermotolerans balanced the mouthfeel of wines with a high sugar residue. The nature and timing of the nutritional supplementation also affected the pH and the sensory evaluation of wines. This winemaking practice is crucial to regulate yeast metabolism, managing the competition among different species that modify the quality perception of wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Raffaele Guzzon, Tomas Roman, Adelaide Gallo, Mario Malacarne

Fondazione Edmund Mach

Contact the author

Keywords

Lachancea thermotolerans – Non-Saccharomyces yeast – Vino Santo – Sweet wine – Biological acidification

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Soil preparation practices to eliminate soil restrictions to grapevine root distribution for the establishment of sustainable vineyards

Grapevine yield and wine quality are dependent on good quality vegetative growth and root development. Soils that restrict proper grapevine root development, together with the high cost of establishing a new vineyard, require effective soil preparation to sustain productive vineyards for 25 years. This study reviews soil preparation research conducted over the past 50 years and identifies best practices to remove soil physical and chemical impediments to create optimum conditions for root growth.

Enological and nutraceutical potential of some grape varieties tolerant to downy mildew and powdery mildew

AIM: Since 2012 the Veneto Region regulation (north-east Italy) allowed wine production using 20 hybrid grapevine varieties selected for their high tolerance to downy mildew and powdery mildew. Characterized by vigour, high grape productivity and low pesticide use, these varieties are suitable to develop sustainable viticulture in mountain areas located at medium altitudes.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

The study was carried out in 2006 with Merlot grapes from vines grown using the trellis system, where four treatments were compared with different levels of water stress.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.