WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Abstract

Oxidation in wine is mostly related to the Michael addition of nucleophiles on two quinones formed from the oxidation of ortho-diphenols. In wine this mechanism is responsible for the increase of the yellow hue and aroma loss. Glutathione exerts its antioxidant activity throughout its competitive addition onto quinones, but many other compounds can have the same behavior: sulfanyl compounds, amino acids, etc. Addition of yeast derivates during the winemaking process can increase the level of those nucleophilic compounds and then confer to the wine a higher resistance against chemical oxidation. In order to evaluate the antioxidant efficiency of yeast derivatives the measurement of radical scavenging activity was firstly applied in model wine like conditions. All tested YDs could reduce the DPPH radical, with yeast derivatives enriched in glutathione presenting the highest antiradical capacity compared to those without glutathione enrichment. To estimate the impact of the glutathione concentration on the DPPH results, its concentration was measured on the different solutions. However, there was no clear relationship between the concentration of native glutathione and the anti-radical activity of the YD (spearman correlation ρ = 0.46, p-value > 0.3) despite the known antiradical activity of glutathione. To go beyond the DPPH method, which does not provide any molecular information related to the antioxidant activity of inactivated yeast derivatives, we developed the measurement of inactivated yeast derivatives’ nucleophiles through the evaluation of the specificity and the kinetic of the competitive addition of nucleophilic compounds on the stable quinone 4-methylcatechol. The soluble part of yeast derivatives dissolved in a wine-like a model solution was added to this quinone and thanks to the LC-MS characterization of formed adducts, we could extract this nucleophilic fraction. The pool of 52 nucleophiles other than glutathione enabled to cluster the yeast derivatives according to their initial nucleophilic content and thus their potential antioxidant activity. The DPPH assay revealed the failure of the glutathione concentration to explain the scavenging activity of yeast derivatives soluble fractions. However, the derivatization procedure highlighted the potential of nucleophiles not considered until now to better characterize the antiradical activity of yeast derivatives soluble fractions. This study showed the major importance to consider the global nucleophilic fraction for a better assessment of the antioxidant potential of yeast derivative soluble fractions and highlights the potential of this approach for the characterization of oenological additives.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Rémi Schneider, Régis Gougeon, Maria Nikolantonaki

Presenting author

Rémi Schneider – Oenobrands, Montpellier, France

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France, Florian Bahut DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR, IUVV, Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France, Annabelle Cottet Oenobrands, Montpellier, France

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Aroma composition of mono-varietal white wines for the production of Custoza

AIM: The appellation “Bianco di Custoza” or “Custoza”, born in 1971, is one of the oldest white wines Protected Designation of Origin in Italy.

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, challenging wine sensory quality. Rising temperatures increase grape sugar levels, with higher wine ethanol (EtOH) contents, reduce total acidity (TA) converging with increased pH and lead to the accumulation of CC odorous markers such as γ-nonalactone (γ-C9) and massoia lactone (ML).

The interplay between grape ripening and weather anomalies – A modeling exercise

Current climate change is increasing inter- and intra-annual variability in atmospheric conditions leading to grapevine phenological shifts as well altered grape ripening and composition at ripeness. This study aims to (i) detect weather anomalies within a long-term time series, (ii) model grape ripening revealing altered traits in time to target specific ripeness thresholds for four Vitis vinifera cultivars, and (iii) establish empirical relationships between ripening and weather anomalies with forecasting purposes. The Day of the Year (DOY) to reach specific grape ripeness targets was determined from time series of sugar concentrations, total acidity and pH collected from a private company in the period 2009-2021 in North-Eastern Italy. Non-linear models for the DOY to reach the specified ripeness thresholds were assessed for model efficiency (EF) and error of prediction (RMSE) in four grapevine cultivars (Merlot, Cabernet Sauvignon, Glera and Garganega). For each vintage and cultivar, advances or delays in DOY to target specified ripeness thresholds were assessed with respect to the average ripening dynamics. Long-term meteorological series monitored at ground weather station by means of hourly air temperature and rainfall data were analyzed. Climate statistics were obtained and for each time period (month, bimester, quarter and year) weather anomalies were identified. A linear regression analysis was performed to assess a possible correlation that may exist between ripening and weather anomalies. For each cultivar, ripeness advances or delays expressed in number of days to target the specific ripening threshold were assessed in relation to registered weather anomalies and the specific reference time period in the vintage. Precipitation of the warmest month and spring quarter are key to understanding the effect of climate change on sugar ripeness. Minimum temperatures of May-June bimester and maximum temperatures of spring quarter best correlate with altered total acidity evolution and pH increment during the ripening process, respectively.

Biodiversity and genetic profiling of autochthonous grapevine varieties in Armenia: A key to sustainable viticulture

Armenia, as one of the ancient centers of grapevine domestication, harbors a unique repository of genetic diversity in its indigenous and wild grapevine populations, highlighting a key role in the millennia-lasting history of grape cultivation in the Southern Caucasus (Margaryan et al., 2021).