WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Abstract

Oxidation in wine is mostly related to the Michael addition of nucleophiles on two quinones formed from the oxidation of ortho-diphenols. In wine this mechanism is responsible for the increase of the yellow hue and aroma loss. Glutathione exerts its antioxidant activity throughout its competitive addition onto quinones, but many other compounds can have the same behavior: sulfanyl compounds, amino acids, etc. Addition of yeast derivates during the winemaking process can increase the level of those nucleophilic compounds and then confer to the wine a higher resistance against chemical oxidation. In order to evaluate the antioxidant efficiency of yeast derivatives the measurement of radical scavenging activity was firstly applied in model wine like conditions. All tested YDs could reduce the DPPH radical, with yeast derivatives enriched in glutathione presenting the highest antiradical capacity compared to those without glutathione enrichment. To estimate the impact of the glutathione concentration on the DPPH results, its concentration was measured on the different solutions. However, there was no clear relationship between the concentration of native glutathione and the anti-radical activity of the YD (spearman correlation ρ = 0.46, p-value > 0.3) despite the known antiradical activity of glutathione. To go beyond the DPPH method, which does not provide any molecular information related to the antioxidant activity of inactivated yeast derivatives, we developed the measurement of inactivated yeast derivatives’ nucleophiles through the evaluation of the specificity and the kinetic of the competitive addition of nucleophilic compounds on the stable quinone 4-methylcatechol. The soluble part of yeast derivatives dissolved in a wine-like a model solution was added to this quinone and thanks to the LC-MS characterization of formed adducts, we could extract this nucleophilic fraction. The pool of 52 nucleophiles other than glutathione enabled to cluster the yeast derivatives according to their initial nucleophilic content and thus their potential antioxidant activity. The DPPH assay revealed the failure of the glutathione concentration to explain the scavenging activity of yeast derivatives soluble fractions. However, the derivatization procedure highlighted the potential of nucleophiles not considered until now to better characterize the antiradical activity of yeast derivatives soluble fractions. This study showed the major importance to consider the global nucleophilic fraction for a better assessment of the antioxidant potential of yeast derivative soluble fractions and highlights the potential of this approach for the characterization of oenological additives.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Rémi Schneider, Régis Gougeon, Maria Nikolantonaki

Presenting author

Rémi Schneider – Oenobrands, Montpellier, France

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France, Florian Bahut DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR, IUVV, Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France, Annabelle Cottet Oenobrands, Montpellier, France

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

Nitrogen fertilization is an important practice to guarantee vineyards sustainability and performance over years, while ensuring berry quality. However, achieving a precise nitrogen fertilization to meet specific objectives of production is difficult. There is a lack of knowledge on the impact of nitrogen fertilizers (soil/foliar; organic/mineral) and different levels of fertilization on the interactions between carbon and nitrogen cycles within the vine. Crop models may be useful in that purpose because they can provide new insights of the effects of fertilization in carbon and nitrogen storage. The objective of this study is to build a model to simulate grapevine carbon and nitrogen content in vines to evaluate the impact of different fertilization strategies in vine growth and yield.

Modélisation du régime thermique des sols de vignoble du Val de Loire : relations avec des variables utilisables pour la caractérisation des terroirs

Temperature has a decisive influence on the growth and development of plants (Carbonneau et al., 1992). In particular, in the case of the vine, the temperature is an omnipresent variable in the climatic indices (Huglin, 1986). For reasons of convenience, these indices use the temperature of the air measured under shelter in a meteorological station, making the implicit hypothesis of a concordance between this temperature and that of the sites of perception of the thermal stimulus by the plant. However, development may be more dependent on soil temperature than air temperature (Kliewer, 1975). Morlat (1989) thus verified that the variability in the precocity of the vine, positively correlated with the quality of the harvest and of the wine in the Loire Valley, was mainly explained by differences in temperature of the root zones.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.

Rootstock drought tolerance under dry-farmed conditions in Oregon’s Willamette Valley

Rootstocks are used in vineyards worldwide and have been the focus of many studies. However, rootstock performance varies based on regional climates and soil types. As Oregon experiences warmer seasons and variable precipitation patterns, growers are interested in rootstocks with more drought tolerance than the commonly planted rootstocks: 3309C, Riparia Gloire, and 101-14 Mgt. In Oregon’s Willamette Valley, annual precipitation is typically sufficient to make dry-farming possible and use of irrigation is limited.

Caratterizzazione delle produzioni vitivinicole dell’ area del Barolo: un’esperienza pluridisciplinare triennale (5)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...