WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Abstract

Oxidation in wine is mostly related to the Michael addition of nucleophiles on two quinones formed from the oxidation of ortho-diphenols. In wine this mechanism is responsible for the increase of the yellow hue and aroma loss. Glutathione exerts its antioxidant activity throughout its competitive addition onto quinones, but many other compounds can have the same behavior: sulfanyl compounds, amino acids, etc. Addition of yeast derivates during the winemaking process can increase the level of those nucleophilic compounds and then confer to the wine a higher resistance against chemical oxidation. In order to evaluate the antioxidant efficiency of yeast derivatives the measurement of radical scavenging activity was firstly applied in model wine like conditions. All tested YDs could reduce the DPPH radical, with yeast derivatives enriched in glutathione presenting the highest antiradical capacity compared to those without glutathione enrichment. To estimate the impact of the glutathione concentration on the DPPH results, its concentration was measured on the different solutions. However, there was no clear relationship between the concentration of native glutathione and the anti-radical activity of the YD (spearman correlation ρ = 0.46, p-value > 0.3) despite the known antiradical activity of glutathione. To go beyond the DPPH method, which does not provide any molecular information related to the antioxidant activity of inactivated yeast derivatives, we developed the measurement of inactivated yeast derivatives’ nucleophiles through the evaluation of the specificity and the kinetic of the competitive addition of nucleophilic compounds on the stable quinone 4-methylcatechol. The soluble part of yeast derivatives dissolved in a wine-like a model solution was added to this quinone and thanks to the LC-MS characterization of formed adducts, we could extract this nucleophilic fraction. The pool of 52 nucleophiles other than glutathione enabled to cluster the yeast derivatives according to their initial nucleophilic content and thus their potential antioxidant activity. The DPPH assay revealed the failure of the glutathione concentration to explain the scavenging activity of yeast derivatives soluble fractions. However, the derivatization procedure highlighted the potential of nucleophiles not considered until now to better characterize the antiradical activity of yeast derivatives soluble fractions. This study showed the major importance to consider the global nucleophilic fraction for a better assessment of the antioxidant potential of yeast derivative soluble fractions and highlights the potential of this approach for the characterization of oenological additives.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Rémi Schneider, Régis Gougeon, Maria Nikolantonaki

Presenting author

Rémi Schneider – Oenobrands, Montpellier, France

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France, Florian Bahut DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR, IUVV, Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France, Annabelle Cottet Oenobrands, Montpellier, France

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Management of varietal thiols in white and rosé wines using biotechnical tools

The present study evaluates the effect of prefermentative maceration enzymes and yeast autolysate on the concentration of conjugated precursors and volatile thiols, respectively.Sauvignon blanc and Merlot grapes underwent skin-contact maceration with or without pectolytic enzymes, for the production of white and rosé wines

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

On the meaning of looking for terroir perceptions in blind tastings

If one considers as “physical or sensory attributes” of a wine its concentrations of alcohol and of other substances, it can be stated that another class of attributes exists

Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Nitrogen (N) uptake by grapevine roots in forms like nitrate, ammonium, urea, or amino acids influences vegetative and generative growth, impacting grape quality and wine sensory profile. The study examined nitrogen’s influence on phenolic compounds in leaves, berries, and wine across different scales — hydroponics, soil culture, and vineyard trials. Nitrogen forms altered metabolite patterns in leaves and wine significantly, affecting aroma and flavor. Key nitrogen assimilation enzymes (NR, NiR, GS) in grapevine rootstocks responded to nitrogen forms and timing. Hydroponically grown rootstocks fertilized with various forms showed differences in enzyme expression and activity, suggesting rootstocks can assimilate amino acid glutamine (Gln).

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).