WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Abstract

Oxidation in wine is mostly related to the Michael addition of nucleophiles on two quinones formed from the oxidation of ortho-diphenols. In wine this mechanism is responsible for the increase of the yellow hue and aroma loss. Glutathione exerts its antioxidant activity throughout its competitive addition onto quinones, but many other compounds can have the same behavior: sulfanyl compounds, amino acids, etc. Addition of yeast derivates during the winemaking process can increase the level of those nucleophilic compounds and then confer to the wine a higher resistance against chemical oxidation. In order to evaluate the antioxidant efficiency of yeast derivatives the measurement of radical scavenging activity was firstly applied in model wine like conditions. All tested YDs could reduce the DPPH radical, with yeast derivatives enriched in glutathione presenting the highest antiradical capacity compared to those without glutathione enrichment. To estimate the impact of the glutathione concentration on the DPPH results, its concentration was measured on the different solutions. However, there was no clear relationship between the concentration of native glutathione and the anti-radical activity of the YD (spearman correlation ρ = 0.46, p-value > 0.3) despite the known antiradical activity of glutathione. To go beyond the DPPH method, which does not provide any molecular information related to the antioxidant activity of inactivated yeast derivatives, we developed the measurement of inactivated yeast derivatives’ nucleophiles through the evaluation of the specificity and the kinetic of the competitive addition of nucleophilic compounds on the stable quinone 4-methylcatechol. The soluble part of yeast derivatives dissolved in a wine-like a model solution was added to this quinone and thanks to the LC-MS characterization of formed adducts, we could extract this nucleophilic fraction. The pool of 52 nucleophiles other than glutathione enabled to cluster the yeast derivatives according to their initial nucleophilic content and thus their potential antioxidant activity. The DPPH assay revealed the failure of the glutathione concentration to explain the scavenging activity of yeast derivatives soluble fractions. However, the derivatization procedure highlighted the potential of nucleophiles not considered until now to better characterize the antiradical activity of yeast derivatives soluble fractions. This study showed the major importance to consider the global nucleophilic fraction for a better assessment of the antioxidant potential of yeast derivative soluble fractions and highlights the potential of this approach for the characterization of oenological additives.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Rémi Schneider, Régis Gougeon, Maria Nikolantonaki

Presenting author

Rémi Schneider – Oenobrands, Montpellier, France

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France, Florian Bahut DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR, IUVV, Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France, Annabelle Cottet Oenobrands, Montpellier, France

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The use of zirconia dioxide enclosed in a metallic cage for the stabilisation of Chardonnay white wine

White wines are commonly stabilised by removing the heat unstable proteins through adsorption by bentonite, an effective but inefficient wine processing step. Alternative absorbents are thus sought and zirconium dioxide (zirconia) is recognised as a promising candidate.

HPLC-based quantification of elemental sulfur in grape juice

Elemental sulfur is commonly used in vineyards as a fungicide to prevent diseases and protect grapevines.1 The challenges of climate change are intensifying disease pressure, further increasing the reliance on sulfur use. Understanding the range of potential impacts of residual sulfur during the winemaking process is becoming increasingly important.

Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

The Japanese beetle, Popillia japonica Newman, is considered one of the most harmful organisms due to its ability to feed on more than 300 plant species. Symptoms indicative of adult beetles include feeding holes in host plants extending to skeletonization of leaves when population numbers are high. The vine is one of the species most affected by this beetle. However, the damaged plants, even if with difficulty, manage to recover, bringing the bunches of grapes to ripeness.

Effectiveness of “curettage” and rootstock over-grafting in the control of esca

Context and purpose of the study. The grapevine domestication requested the need of pruning, which expose the vines to trunk pathogens, leading to the spread of vine trunk diseases.

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].