WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Abstract

Oxidation in wine is mostly related to the Michael addition of nucleophiles on two quinones formed from the oxidation of ortho-diphenols. In wine this mechanism is responsible for the increase of the yellow hue and aroma loss. Glutathione exerts its antioxidant activity throughout its competitive addition onto quinones, but many other compounds can have the same behavior: sulfanyl compounds, amino acids, etc. Addition of yeast derivates during the winemaking process can increase the level of those nucleophilic compounds and then confer to the wine a higher resistance against chemical oxidation. In order to evaluate the antioxidant efficiency of yeast derivatives the measurement of radical scavenging activity was firstly applied in model wine like conditions. All tested YDs could reduce the DPPH radical, with yeast derivatives enriched in glutathione presenting the highest antiradical capacity compared to those without glutathione enrichment. To estimate the impact of the glutathione concentration on the DPPH results, its concentration was measured on the different solutions. However, there was no clear relationship between the concentration of native glutathione and the anti-radical activity of the YD (spearman correlation ρ = 0.46, p-value > 0.3) despite the known antiradical activity of glutathione. To go beyond the DPPH method, which does not provide any molecular information related to the antioxidant activity of inactivated yeast derivatives, we developed the measurement of inactivated yeast derivatives’ nucleophiles through the evaluation of the specificity and the kinetic of the competitive addition of nucleophilic compounds on the stable quinone 4-methylcatechol. The soluble part of yeast derivatives dissolved in a wine-like a model solution was added to this quinone and thanks to the LC-MS characterization of formed adducts, we could extract this nucleophilic fraction. The pool of 52 nucleophiles other than glutathione enabled to cluster the yeast derivatives according to their initial nucleophilic content and thus their potential antioxidant activity. The DPPH assay revealed the failure of the glutathione concentration to explain the scavenging activity of yeast derivatives soluble fractions. However, the derivatization procedure highlighted the potential of nucleophiles not considered until now to better characterize the antiradical activity of yeast derivatives soluble fractions. This study showed the major importance to consider the global nucleophilic fraction for a better assessment of the antioxidant potential of yeast derivative soluble fractions and highlights the potential of this approach for the characterization of oenological additives.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Rémi Schneider, Régis Gougeon, Maria Nikolantonaki

Presenting author

Rémi Schneider – Oenobrands, Montpellier, France

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France, Florian Bahut DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR, IUVV, Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France, Annabelle Cottet Oenobrands, Montpellier, France

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Frost variability in the Champagne vineyard: probability calendar

Dans le vignoble champenois, le risque thermique associé au gel des bourgeons au printemps et en hiver est très mal connu et ne peut être envisagé qu’à l’échelle locale, en raison d’une variabilité spatiale forte. L’objectif de l’étude est d’appréhender ce risque de façon fiable et pluri locale en utilisant le réseau de stations météos récemment implanté.

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Comparison of destructive and non-destructive measurements of table grape berries to assess quality parameters using spectroscopy

The quality of table grapes is critically influenced by several parameters, including sugar content, acidity, firmness, and overall appearance.

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.