WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Posters 9 Mechanistic insights into the bioavailability of oleocanthal and oleacein from olive oil in presence of wine active peptides and amino acids

Mechanistic insights into the bioavailability of oleocanthal and oleacein from olive oil in presence of wine active peptides and amino acids

Abstract

Oleocanthal (OC) and oleacein (OL) are highly bioactive secoiridoids found in olive oil at elevated concentrations, especially when it is produced from unripe olives (Olea europaea L.). Both compounds have been correlated with strong activities against serious diseases through recent clinical trials. The most important clinical trials have been performed in patients against chronic lymphocytic leukemia1, against mild cognitive impairment2 and against platelet aggregation of normal3 or diabetic patients. Carefully designed nutritional interventions in humans using olive oil with high OC/OL content or olive oil without OC/OL have provided strong evidence about the unique therapeutic role of those compounds. However, both compounds do not actually circulate in the body and cannot be found in any biological fluid. Recent studies have shown that OC and OL react spontaneously with plasma aminoacids like glycine to form new highly bioactive chemical entities like oleoglycine that circulate in the blood and can also reach the brain of experimental animals4. During our continuous effort to understand the mechanisms of action of OC/OL, we investigated the reactions of both compounds with aminoacids and peptides found in white wines5. During this study we screened the selectivity and the rate of this reaction, and we discovered new metabolites with unique structures and properties like oleocysteine (1a,b), oleoserine (2a,b) or oleoglutathione (3a,b). The synthesized metabolites were structurally elucidated using NMR and MS. OC/OL selectivity was assessed by competitive nucleophilic addition reactions with peptides and amino acids at pH=7 and 3.5, quantifying products and ratios by UHPLC-Q-ToF MS. The obtained results can shed light on the mechanism of action of OC/OL and more significantly explain their bioavailability.

1.        Rojas Gil AP, Kodonis I, Ioannidis A, Nomikos T, Dimopoulos I, Kosmidis G, Melliou E, Magiatis P. The Effect of Dietary Intervention With High-Oleocanthal and Oleacein Olive Oil in Patients With Early-Stage Chronic Lymphocytic Leukemia: A Pilot Randomized Trial. Front Oncol 2022; 5746.

2.        Agrawal K, Melliou E, Li X, Pedersen TL, Wang SC, Magiatis P, Newman JW, Holt RR. Oleocanthal-rich extra virgin olive oil demonstrates acute anti-platelet effects in healthy men in a randomized trial. J Funct Foods 2017;36: 84-93

3.        Tsolaki M, Lazarou E, Kozori M, Petridou N, Tabakis E, Lazarou I, Karakota M, Saoulidis I, Melliou E, Magiatis P. A Randomized Clinical Trial of Greek High Phenolic Early Harvest Extra Virgin Olive Oil in Mild Cognitive Impairment: The MICOIL Pilot Study. J Alzh Disease 2020; 78.

4.        Darakjian L, Rigakou A, Brannen A, Qusa MH, Tasiakou N, Diamantakos P, Reed MN, Panizzi P, Boersma MD, Melliou E, El Sayed KA, Magiatis P, Kaddoumi A. Spontaneous In Vitro and In Vivo Interaction of (−)-Oleocanthal with Glycine in Biological Fluids: Novel Pharmacokinetic Markers”. ACS Pharmacol Transl Sci 2021; 4: 179-192.

5.        Romanet, R., Bahut, F., Nikolantonaki, M., & Gougeon, R. D. (2020). Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry. Antioxidants (Basel), 9(2). https://doi.org/10.3390/antiox9020115.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Kalyva F, Diamantakos P, Melliou E, Nikolantonaki M, Magiatis P

Presenting author

Kalyva F

UMR PAM, IUVV, Université Bourgogne-Franche-Comté

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

Etude préliminaire des influences pédoclimatiques sur les caractéristiques quali-quantitatives du cépage aglianico dans une zone de la province de benevento-ltalie

The need to classify the vineyards of an area according to the quality of its wines is not recent, but it is only in the last ten years that studies on the suitability of different areas for the cultivation of vineyard take on an integrated and interdisciplinary character (Boselli, 1991). The definition of the suitability of the environment is thus obtained by making the climatic, pedological, topographical and cultural information interact with the vegetative, productive and qualitative expression of the grape varieties.

Campania region grapevine patrimony: a determination of the heat requirement of 19 nearly all-native ultivars. Nine years of observations.

Nous avons peu d’informations sur les cépages cultivés dans la région de la Campania (sud de l’ltalie). En particulier insuffisant sont les études sur les besoins thermiques de tels cépages.

Zoning influence in chromatic parameters in Monastrell grape

Zoning analysis determine homogeneous areas principally from the point of view of the medium, giving as a result a map which cartographic units synthesize the relations between the edaphic factors; morphological factors of the soil and climatic factors

Extreme canopy management for vineyard adaptation to climate change: is it a good idea?

Climate change constitutes an enormous challenge for humankind and for all human activities, viticulture not being an exception. Long-term strategic changes are probably needed the most, but growers also need to deal with short-term changes: summers that are getting progressively warmer, earlier harvest dates and higher pH in musts and wines. In the last 10-15 years, a relevant corpus of research is being developed worldwide in order to evaluate to which extent extreme canopy management operations, aimed at reducing leaf area and, thus, limiting the source to sink ratio, could be useful to delay ripening. Although extreme canopy management can result in relevant delays in harvest dates, longer term studies, as well as detailed analysis of their implications on carbohydrate reserves, bud fertility and future yield are desirable before these practices can be recommended.