WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Posters 9 Mechanistic insights into the bioavailability of oleocanthal and oleacein from olive oil in presence of wine active peptides and amino acids

Mechanistic insights into the bioavailability of oleocanthal and oleacein from olive oil in presence of wine active peptides and amino acids

Abstract

Oleocanthal (OC) and oleacein (OL) are highly bioactive secoiridoids found in olive oil at elevated concentrations, especially when it is produced from unripe olives (Olea europaea L.). Both compounds have been correlated with strong activities against serious diseases through recent clinical trials. The most important clinical trials have been performed in patients against chronic lymphocytic leukemia1, against mild cognitive impairment2 and against platelet aggregation of normal3 or diabetic patients. Carefully designed nutritional interventions in humans using olive oil with high OC/OL content or olive oil without OC/OL have provided strong evidence about the unique therapeutic role of those compounds. However, both compounds do not actually circulate in the body and cannot be found in any biological fluid. Recent studies have shown that OC and OL react spontaneously with plasma aminoacids like glycine to form new highly bioactive chemical entities like oleoglycine that circulate in the blood and can also reach the brain of experimental animals4. During our continuous effort to understand the mechanisms of action of OC/OL, we investigated the reactions of both compounds with aminoacids and peptides found in white wines5. During this study we screened the selectivity and the rate of this reaction, and we discovered new metabolites with unique structures and properties like oleocysteine (1a,b), oleoserine (2a,b) or oleoglutathione (3a,b). The synthesized metabolites were structurally elucidated using NMR and MS. OC/OL selectivity was assessed by competitive nucleophilic addition reactions with peptides and amino acids at pH=7 and 3.5, quantifying products and ratios by UHPLC-Q-ToF MS. The obtained results can shed light on the mechanism of action of OC/OL and more significantly explain their bioavailability.

1.        Rojas Gil AP, Kodonis I, Ioannidis A, Nomikos T, Dimopoulos I, Kosmidis G, Melliou E, Magiatis P. The Effect of Dietary Intervention With High-Oleocanthal and Oleacein Olive Oil in Patients With Early-Stage Chronic Lymphocytic Leukemia: A Pilot Randomized Trial. Front Oncol 2022; 5746.

2.        Agrawal K, Melliou E, Li X, Pedersen TL, Wang SC, Magiatis P, Newman JW, Holt RR. Oleocanthal-rich extra virgin olive oil demonstrates acute anti-platelet effects in healthy men in a randomized trial. J Funct Foods 2017;36: 84-93

3.        Tsolaki M, Lazarou E, Kozori M, Petridou N, Tabakis E, Lazarou I, Karakota M, Saoulidis I, Melliou E, Magiatis P. A Randomized Clinical Trial of Greek High Phenolic Early Harvest Extra Virgin Olive Oil in Mild Cognitive Impairment: The MICOIL Pilot Study. J Alzh Disease 2020; 78.

4.        Darakjian L, Rigakou A, Brannen A, Qusa MH, Tasiakou N, Diamantakos P, Reed MN, Panizzi P, Boersma MD, Melliou E, El Sayed KA, Magiatis P, Kaddoumi A. Spontaneous In Vitro and In Vivo Interaction of (−)-Oleocanthal with Glycine in Biological Fluids: Novel Pharmacokinetic Markers”. ACS Pharmacol Transl Sci 2021; 4: 179-192.

5.        Romanet, R., Bahut, F., Nikolantonaki, M., & Gougeon, R. D. (2020). Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry. Antioxidants (Basel), 9(2). https://doi.org/10.3390/antiox9020115.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Kalyva F, Diamantakos P, Melliou E, Nikolantonaki M, Magiatis P

Presenting author

Kalyva F

UMR PAM, IUVV, Université Bourgogne-Franche-Comté

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Polyphenolic profile and dietary fiber content of skins and seeds from unfermented and fermented grape pomace

The valorization of winemaking byproducts is subordinated to the knowledge of their chemical characteristics. This work concerned the determination of the polyphenolic profile and the dietary fiber content of skins and seeds from unfermented and fermented pomace of different cultivars (Moscato bianco, Cortese, Arneis, Pinot Noir, Barbera, Grignolino, Nebbiolo), sampled from some wineries in the Piedmont area (Italy) during the 2020 harvest.

Soils, climate and vine management: their influence on Marlborough Sauvignon blanc wine style

Sauvignon blanc was first planted in Marlborough, New Zealand in the mid-1970s. Since that time, Marlborough has gained an international reputation by producing the definitive wine style of that grape variety.

A tool for catching mice in wine: development and application of a method for the detection of mousy off-flavour compounds in wine

Over the past two years, the AWRI has received 69 wine samples suspected of being affected by mousy off-flavour. The character has been mostly observed in white wines.

Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

AIM: The composition and quality of wine are directly linked to microorganisms involved in the alcoholic fermentation. Several studies have been conducted on the impact of Saccharomyces cerevisiae on volatile compounds composition after fermentation. However, if different studies have dealt with combined sensory and volatiles analyses, few works have compared so far the impact of distinct yeast strains on the global metabolome of the wine.

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.